期刊文献+

基于K-means聚类的电力大数据脱敏技术研究 被引量:1

Research on desensitization technology of power big data based on K-means clustering
下载PDF
导出
摘要 针对传统大数据脱敏技术缺少对动态数据的脱敏处理,导致大数据脱敏效果不佳的问题,提出基于K-means聚类的电力大数据脱敏技术研究。根据电力数据异常量的K-means聚类中心距离进行检测,建立脱敏系统,在系统中预留元数据管理接口,依据检测结果导入敏感配置信息。根据用户需求,通过对敏感数据的识别、流程的判断,确定敏感数据,对静态和动态敏感数据进行脱敏处理。实验结果可知,该技术只暴露用户身份证号前两位,其余信息均能被脱敏处理,有效保证了用户身份信息安全。 Aiming at the problem that the traditional big data desensitization technology is lack of dynamic data desensitization processing,which leads to the bad effect of big data desensitization,this paper proposes the research of power big data desensitization technology based on K-means clustering. According to the K-means clustering center distance of power data anomaly detection,the desensitization system is established,the metadata management interface is reserved in the system,and the sensitive configuration information is imported according to the detection results. According to the needs of users,through the identification and judgment process of sensitive data,the sensitive data is determined,and the static and dynamic sensitive data are desensitized. The experimental results show that the technology only exposes the top two users’ ID number,and the rest of the information can be desensitized,effectively guaranteeing the user identity information security.
作者 徐敏 XU Min(Yunnan Power Grid Co.,Ltd.,Kunming 650217,China)
出处 《电子设计工程》 2022年第19期175-178,184,共5页 Electronic Design Engineering
基金 云南电网有限责任公司基础数据集成管控项目(059300HJ42200012)。
关键词 K-MEANS聚类 电力大数据 脱敏技术 静态数据 动态数据 K-means clustering power big data desensitization technology static data dynamic data
  • 相关文献

参考文献16

二级参考文献155

共引文献372

同被引文献40

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部