摘要
为保障电动车辆的可靠性和安全性,提出了一种dropout Monte Carlo(dropout-MC)递归神经网络的锂离子动力电池系统的剩余寿命(RUL)预测方法。以等电压充电时间间隔作为间接健康因子,考虑外部干扰和容量再生现象的影响,以变分模态分解(VMD)来获得电池退化趋势。以改进的递归神经网络模型——长短时间序列(LSTM)来获得剩余寿命预测。以dropout-MC采样方法来表征锂离子电池剩余寿命的不确定性,并获得锂离子电池RUL的95%置信区间。结果表明:相较于传统的极限学习机(ELM)方法和非线性自回归神经网络(NARX)方法,该文方法的剩余寿命预测性能指标均低于2.4%。因而,该方法具有优越的预测性能,且获得预测的置信区间。
A dropout Monte Carlo(dropout-MC)recurrent neural network method was proposed for remaining useful life(RUL)prediction for lithium-ion batteries to guarantee the safety and reliability of electric vehicles.An equal charging voltage time was introduced as an indirect health indicator,and the variational mode decomposition(VMD)was adopted to reduce the influence of external interference and capacity regeneration.The long and short time series(LSTM)as the improved recurrent neural network was established for accurate RUL prediction.The dropout-MC method was proposed to obtain the 95%confidence interval for quantifying the uncertainty of the RUL prediction.Compared with traditional extreme learning machine(ELM)and nonlinear autoregressive neural network(NARX)methods,the proposed method not only can achieve a higher accuracy in RUL prediction with prediction performance below 2.4%,but also obtain reliability of RUL prediction.
作者
魏孟
王桥
叶敏
廉高棨
徐信芯
WEI Meng;WANG Qiao;YE Min;LIAN Gaoqi;XU Xinxin(National Engineering Laboratory for Highway Maintenance Equipment,Chang'an University,Xi'an,710064;Department of Mechanical Engineering,National University of Singapore,Singapore 117576,Singapore;Henan Key Laboratory of High-Grade Highway Detection and Maintenance Technology,Xinxiang 453003,China)
出处
《汽车安全与节能学报》
CAS
CSCD
北大核心
2022年第3期541-549,共9页
Journal of Automotive Safety and Energy
基金
陕西省科技创新团队(2020TD0012)
陕西省青年科技新星项目(2020KJXX-044)
中央高校基金优秀博士论文资助项目CHD(300203211251)
河南省杰出外籍科学家工作室(GZS2022004)。