摘要
High-frequency soft magnetic ferrite ceramics are desired in miniaturized and efficient power electronics but remain extremely challenging to deploy on account of the power loss(Pcv)at megahertz frequencies.Here,we prepared NiCuZn ferrite with superior high-frequency properties by V_(2)O_(5)and Bi_(2)O_(3)synergistic doping,which proves to be a potent pathway to reduce Pcv of the ferrite at megahertz frequencies.The sample doped with 800 ppm V_(2)O_(5)and 800 ppm Bi_(2)O_(3)yielded the most optimized magnetic properties with a Pcv of 113 kW/m^(3)(10 MHz,5 mT,25℃),an initial permeability(μi)of 89,and a saturation induction(Bs)of 340 mT,which is at the forefront of the reported results.These outstanding properties are closely related to the notable grain boundary structure,which features a new type of nano-Bi_(2)Fe_(4)O_(9)phase around ferrite grains and a Ca/Si/V/O amorphous layer.Our results indicate great strides in correlating the grain boundary structure with multiple-ion doping and set the scene for the developing high-frequency soft magnet ferrites.
基金
This work was supported by the National Natural Science Foundation of China(Nos.52002103 and 52027802)
the Fundamental Research Funds for the Provincial Universities of Zhejiang(GK209907299001-022)
the Key Research and Development Program of Zhejiang Province(Nos.2020C01008,2021C01023,2021C01192,and 2021C01193).