期刊文献+

管道内径与壁温对高压氢气自发点火的数值研究 被引量:2

Numerical study on spontaneous ignition of high pressure hydrogen gas by tube inner diameter and wall temperature
下载PDF
导出
摘要 氢气在高压储存中的泄漏容易导致自燃。为探究影响氢气自燃的因素,运用Realizable模型、EDC模型、21步氢/空气化学反应机理对加压氢气在不同管道壁温和管径中突然释放的自燃过程进行了数值模拟。研究结果发现:管道壁温的降低能显著降低氢气自燃的可能性;输送压力小于8 MPa时,管道内径的增加不利于氢气点火自燃,当输送压力过大时(10 MPa),管道内径的增大为氢气射流的膨胀和扩散提供更多空间,利于氢/空气混合物的生成,促进氢气自燃点火。 Hydrogen leakage in high pressure storage is easy to lead to spontaneous combustion.In order to explore the factors affecting the spontaneous combustion of hydrogen,the spontaneous combustion process of pressurized hydrogen in different pipe wall temperature and pipe diameter was simulated by using Realizable model,EDC model and 21-step hydrogen/air chemical reaction mechanism.The results show that the decrease of pipe wall temperature can significantly reduce the possibility of hydrogen spontaneous combustion.When the conveying pressure is less than 8 MPa,the increase of pipe inner diameter is not conducive to hydrogen ignition and spontaneous ignition.When the conveying pressure is too large(10 MPa),the increase of pipe inner diameter provides more space for expansion and diffusion of hydrogen jet,which is conducive to the formation of hydrogen/air mixture and promotes hydrogen spontaneous ignition.
作者 徐婷婷 朱国庆 陈凡宝 Xu Tingting;Zhu Guoqing;Chen Fanbao(School of Safety Engineering,China University of Mining and Technology,Jiangsu Xuzhou 221116,China)
出处 《消防科学与技术》 CAS 北大核心 2022年第9期1173-1177,共5页 Fire Science and Technology
基金 国家重点研发计划“高机动多功能应急救援车辆关键技术研究与应用示范”(2016YFC0802900)。
关键词 高压氢气泄漏 管道壁温 管道直径 自燃 数值模拟 high-pressure hydrogen leakage pipe wall temperature pipe diameter spontaneous combustion numerical simulation
  • 相关文献

参考文献2

二级参考文献9

  • 1Arindam S, Rangan B. Net energy analysis of hydrogen storage options[J]. International Journal of Hydrogen Energy, 2005, 30(8): 867--877.
  • 2Astbury C R, Hawksworth S J. Spontaneous ignition of hydrogen leaks: A review of postulated of mechanisms [J]. International Journal of Hydrogen Energy, 2007, 32 (13) : 2178--2185.
  • 3Dryer F L, Chaos M, Zhao Z W, et al. Spontaneous ignition of pressurized releases of hydrogen and natural gas into air [J]. Combustion Science and Technology, 2010, 179(4) : 663--694.
  • 4Wolanski P, Wojcicki S. Investigation into the mechanism of diffusion ignition of a combustible gas flowing into an oxidizing atmosphere [A]. Proceedings of 14th Symposium on Combustion [C], New York, USA, 1973.
  • 5Golub V V, Baklanov D I, Bazhenova T V, et al. Shock- induced ignition of hydrogen gas during discharge of high-pressure hydrogen [J]. Journal of Loss Prevention in the Process Industries, 2007, 20(4/5/6) : 439--446.
  • 6Toshio M, Dongjoon K, Hiroumi S, et al. Self-ignition and explosion during discharge of high-pressure hydrogen [J]. Journal of Loss Prevention in the Process Industries, 2008, 21(2) : 199--204.
  • 7Bazhenova T V, Bragin M V, Golub V V, et al. Self ignition of the impulse hydrogen sonic jet emerging in the air semiconfined space [A]. Abstracts of the 25th International Symposium on Shock Waves [ C ]. Springer Berlin, Heidelberg, Germany, 2005.
  • 8Xu Baopeng, Hima L E, Wen Jennifer X, et al. Numerical study on the spontaneous ignition of pressurized hydrogen release through a tube into air [J]. Journal of Loss Prevention in the Process Industries, 2007, 21(2):205--213.
  • 9Luis F G M, Jose P T, Sergio A E. High speed flow simulation using openFOAM [J]. Asociaei6n Argentina de Meerniea Computational, 2008, 31 : 2939--2959.

共引文献15

同被引文献33

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部