期刊文献+

氧化铝陶瓷压缩破坏过程离散元数值模拟 被引量:1

Discrete Element Simulations on Compressive Fragmentation of Alumina Ceramics
下载PDF
导出
摘要 陶瓷的压缩破坏是一个爆炸式破碎的过程,在短时间内急剧释放大量能量,并伴随大量高速飞行碎片的产生,实验上较难获取陶瓷压缩破坏过程中碎片的飞溅速度。本文采用离散元数值模拟氧化铝陶瓷的压缩破碎过程,分析了不同应变率下产生碎片的尺寸分布、碎片的平均飞溅速度,以及试件内部不同区域碎片的速度变化规律。研究表明:(1)陶瓷的表观破坏强度以及破碎后碎片的平均飞溅速度与加载应变率正相关;(2)碎片飞溅速度与其初始位置相关,外侧碎片的飞散速度最大,随着初始位置与试件中心轴距离的减小,碎片飞溅速度逐渐减小;(3)随着加载应变率的提高,碎裂产生的碎片数逐渐增多,对应的碎片平均尺寸变小。进一步讨论了试件压缩破碎过程中的能量守恒和转换模式,并对碎片飞溅的平均速度进行了理论分析。 The compressive failure of ceramics is always accompanied by an explosive fragmentation process that creates lots of fragments flying away at high speed.Due to experimental limitations,the details of compressive fragmentation occurred inside the specimen are not clear.In this paper,the compression crushing process of alumina ceramics was numerically reproduced by discrete element method.The size distribution of fragments under different strain rates,the average splash velocity of fragments and the variation law of fragment velocity in different areas within the specimen were analyzed.The simulation results show that as follow:(1)Both the compressive strength of ceramics and the average splash velocity of fragments increase with the increase of loading strain rate.(2)The dispersion velocity of debris is related to its initial position.The dispersion velocity of peripheral debris is the largest.With the decrease of distance between initial position and central axis of the specimen,the dispersion velocity of debris decreases gradually.(3)With the increase of loading strain rate,the number of fragments produced by fragmentation increases gradually,and the corresponding average size of fragments decreases.The energy conservation and conversion mode in the compression crushing process of the specimen were further discussed,and the average velocity of debris splashing was theoretically analyzed.
作者 邱镁钫 张青艳 郑宇轩 QIU Meifang;ZHANG Qingyan;ZHENG Yuxuan(MOE Key Laboratory of Impact and Safety Engineering,Ningbo University,Ningbo 315211,China;Institute of Applied Mechanics,Ningbo Polytechnic,Ningbo 315800,China)
出处 《硅酸盐通报》 CAS 北大核心 2022年第9期3296-3303,共8页 Bulletin of the Chinese Ceramic Society
基金 宁波职业技术学院人才引进科研项目(RC202004)。
关键词 陶瓷 压缩破坏 离散元 碎片飞溅速度 碎片尺寸 能量转换 ceramics compressive failure discrete element fragment splash velocity fragment size energy conversion
  • 相关文献

参考文献8

二级参考文献78

  • 1常敬臻,刘占芳,李英华,李英雷,李建鹏.冲击压缩下A95陶瓷动态力学特性数值模拟[J].材料科学与工程学报,2007,25(4):616-619. 被引量:4
  • 2徐文骥,卢毅申,金洙吉,方建成.等离子体在陶瓷加工中的应用[J].机械工程学报,2002,38(z1):73-75. 被引量:11
  • 3肖桂凤,唐志平,周昌国,胡晓军,蔡建.氮化硅陶瓷层裂强度的研究[J].高压物理学报,2005,19(3):219-224. 被引量:3
  • 4郭晓光,郭东明,康仁科,金洙吉.单晶硅超精密磨削过程的分子动力学仿真[J].机械工程学报,2006,42(6):46-50. 被引量:23
  • 5井玉安,果世驹,韩静涛.钢/Al_2O_3陶瓷/钢轻型复合装甲板抗弹性能[J].北京科技大学学报,2007,29(4):402-407. 被引量:12
  • 6Tan Y Q, Yang D M, Sheng Y. Study of polycrystalline Al2O3 machining cracks using discrete element method. International Journal of Machine tool & Manufacture, 2008, 48(9): 975-982.
  • 7Cundall P A, Strack O D L. A discrete numerical model for granular assembles. Geotechnique, 1979, 299(1): 47-65.
  • 8Potyondy D O, Cundall P A. A bonded-particle model for rock. International Journal of Rock Mechanics & Mining Science, 2004, 41(8): 1329-1364.
  • 9Agarwal S, Rao P V. Experimental investigation of surface/subsurface damage formation and material removal mechanisms in SiC grinding. International Journal of Machine Tools & Manufacture, 2008, 48(6): 698-710.
  • 10Kemeny J M. A model for non-linear rock deformation under compression due to sub-critical crack growth. International Journal of Rock Mechanics & Mining Science & Geomechanics Abstracts, 1991, 28(6): 459-467.

共引文献70

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部