摘要
通过构造辅助泛函和测试函数并应用微分不等式,导出了在次临界情况下一类含导数型非线性记忆项的弱耦合半线性Moore-Gibson-Thompson(MGT)系统柯西问题解的第一下界和迭代序列,运用迭代方法证明了其柯西问题解的全局非存在性和生命跨度的上界估计.
Blow-up of solutions to the Cauchy problem for a weakly coupled semilinear Moore-Gibson-Thompson(MGT) system with nonlinear memory terms of derivative type is studied.By constructing auxiliary functional and test functions and using methods of differential inequalities, the first lower bound and iterative series of solutions in the subcritical case is derived.Furthermore, the nonexistence of global solutions and upper bound of the lifespan of solutions to the Cauchy problem are gotten via iteration technique.
作者
欧阳柏平
OUYANG Bai-ping(Guangzhou Huashang College,Guangzhou 511300,China)
出处
《云南师范大学学报(自然科学版)》
2022年第5期37-46,共10页
Journal of Yunnan Normal University:Natural Sciences Edition
基金
广东省普通高校创新团队资助项目(2020WCXTD008)
广州华商学院科研基金资助项目(2020HSDS01,2021HSKT01)。