期刊文献+

基于张量降维和逻辑张量回归的运动想象分类

Motor imagery EEG classification based on tensor dimensionality reduction and logistic tensor regression
下载PDF
导出
摘要 采用向量型分类算法对运动想象脑电信号张量特征进行分类时,往往会破坏张量特征的结构信息和内在相关性。为此,提出一种基于张量降维和逻辑张量回归的运动想象脑电信号分类算法。在特征提取阶段,采用结合多线性主成分分析和高阶判别分析的张量降维算法提取运动想象脑电信号的张量特征;在特征分类阶段,采用L2范数正则化的逻辑张量回归算法对张量特征进行分类。实验结果表明,提出算法的平均分类准确率达到86.22%,相比于基于张量降维和线性判别分析的算法的78.05%分类准确率以及基于张量降维和逻辑回归的算法的84.30%分类准确率,分别提高了8.17%和1.92%。 As the vector type classification algorithm often destroys the structural information and intrinsic correlation of the tensor features when classifying the tensor features of motor imagery EEG signals.We propose a motor imagery EEG classification algorithm based on tensor dimensionality reduction and logistic tensor regression.In the feature extraction stage,the tensor dimensionality reduction algorithms combining multilinear principal component analysis and high-order discriminant analysis is used to extract the tensor features of the motor imagery EEG signals;then,the logistic tensor regression algorithm is used to classify the tensor features in the feature classification stage.Experimental results show that the classification accuracy of the proposed algorithm is 86.22%,which is higher than 78.05%of the algorithm based on tensor dimension reduction and linear discriminant analysis and 84.30%of the algorithm based on tensor dimension reduction and logistic regression.
作者 邹童童 孔万增 ZOU Tongtong;KONG Wanzeng(School of Computer,Hangzhou Dianzi University,Hangzhou Zhejiang 310018,China)
出处 《杭州电子科技大学学报(自然科学版)》 2022年第5期40-45,共6页 Journal of Hangzhou Dianzi University:Natural Sciences
基金 国家重点研发计划政府间国际科技创新合作资助项目(2017YFE0116800)。
关键词 张量降维 逻辑张量回归 运动想象 脑机接口 tensor dimensionality reduction logistic tensor regression motor imagery brain-computer interface
  • 相关文献

参考文献5

二级参考文献24

  • 1谢水清,杨阳,杨仲乐.脑-机接口中高性能虚拟键盘的实现[J].中南民族大学学报(自然科学版),2004,23(2):38-40. 被引量:8
  • 2官金安,陈亚光.脑控双页虚拟键盘的设计与性能分析[J].中国临床康复,2006,10(9):124-126. 被引量:11
  • 3WOI.PAW J R, BIRBAUMER N, MCFARLAND D J, et al. Brain-computer interfaces for communication and control [J]. Clin Neurophysiol, 2002, 113(6): 767-791.
  • 4BAGHDAD1 G, NASRABADI A M. Comparison of different EEG features in estimation of hypnosis susceptibility level[J]. Comput Biol Med, 2012, 42(5): 590-597.
  • 5YANG J, ZHANG D, FRANGI A F, et al. Two-dimensional PCA: a new approach to appearance-based face representation and recognition [J].IEEE Trans Pattern Anal Math Intell, 2004, 26(1): 131-137.
  • 6LU H, PLATANIOTIS K N, VENETSANOPOUI.OS A N. MPCA: multilinear principal component analysis of tensor ob- jects [J]. IEEE Trans Neural Netw, 2008, 19(1) : 18-39.
  • 7LI J, ZHANG L, TAO D, et al. A prior neurophysiologic knowledge free tensor-based scheme for single trial EEG classi- fication [J]. IEEE Trans Neural Syst Rehabil Eng, 2009, 17 (2): 107-115.
  • 8LATHAUWER L D, MOOR B D, VANDEWALLE J. A multilinear singular value decomposition [J]. SIAM J Matrix Anal Appl, 2000, 21(4): 1253-1278.
  • 9LU H, ENG H L, GUAN C, et al. Regularized common spa- tial pattern with aggregation for EEG classification in small- sample setting [J]. IEEE Trans Biomed Eng, 2010, 57(12): 2936-2946.
  • 10吴婷,颜国正,杨帮华,孙虹.EEG Signal Denoising and Feature Extraction Using Wavelet Transform in Brain Computer Interface[J].Journal of Donghua University(English Edition),2007,24(5):641-645. 被引量:1

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部