期刊文献+

CNN和Transformer在细粒度图像识别中的应用综述 被引量:10

Review of Applications of CNN and Transformer in Fine-Grained Image Recognition
下载PDF
导出
摘要 细粒度图像识别旨在从类别图像中辨别子类别。由于图像间只有细微差异,这使得识别任务具有挑战性。随着深度学习技术的不断进步,基于深度学习的方法定位局部和表示特征的能力越来越强,其中以卷积神经网络(CNN)和Transformer为基础的各类算法大大提高了细粒度图像识别精度,细粒度图像领域得到了显著发展。为了整理两类方法在细粒度图像识别领域的发展历程,对该领域近年来只运用类别标签的方法进行了综述。介绍了细粒度图像识别的概念,详细阐述了主流细粒度图像数据集;介绍了基于CNN和Transformer的细粒度图像识别方法及其性能;最后,总结了细粒度图像识别未来的研究方向。 Fine grained image recognition aims to distinguish subcategories from category images.This makes the recognition task challenging as there are only subtle differences between images.With the continuous progress of deep learning technology,the ability of locating local and representing features based on deep learning methods is becoming stronger and stronger.Among them,various algorithms based on convolutional neural network(CNN)and transformer greatly improve the accuracy of fine-grained image recognition,and the field of fine-grained image has been significantly developed.In order to sort out the development of the two methods in the field of fine-grained image recognition,the methods that only use category labels in this field in recent years are reviewed.Firstly,the concept of fine-grained image recognition is introduced,and the mainstream fine-grained image data set is described in detail.Secondly,the fine-grained image recognition method based on convolutional neural network and visual transformer and its performance are introduced.Finally,the future research direction of fine-grained image recognition is summarized.
作者 马瑶 智敏 殷雁君 萍萍 MAYao;ZHI Min;YIN Yanjun;PING Ping(College of Computer Science and Technology,Inner Mongolia Normal University,Hohhot 010022,China)
出处 《计算机工程与应用》 CSCD 北大核心 2022年第19期53-63,共11页 Computer Engineering and Applications
基金 内蒙古自治区高等学校科学研究项目(NJZZ21004) 内蒙古自然科学基金(2018MS06008) 内蒙古师范大学研究生科研创新基金(CXJJS21159)。
关键词 细粒度图像识别 深度学习 卷积神经网络 TRANSFORMER fine-grained image recognition deep learning convolutional neural network(CNN) Transformer
  • 相关文献

参考文献1

二级参考文献5

共引文献8

同被引文献78

引证文献10

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部