摘要
Bronze phase TiO_(2)[TiO_(2)(B)]has great research potential for sodium storage since it has a higher theoretical capacity and ion mobility compared with other phases of TiO_(2).In this case,preparing porous TiO_(2)(B)nanosheets,which can provide abundant sodium insertion channels,is the most effective way to improve transport kinetics.Here,we use the strong one-dimensional TiO_(2)nanowires as the matrix for stringing these nanosheets together through a simple solvothermal method to build a bunchy hierarchical structure[TiO_(2)(B)-BH],which has fast pseudocapacitance behavior,high structural stability,and effective ion/electron transport.With the superiorities of this structure design,TiO_(2)(B)-BH has a higher capacity(131 vs.70 mAh g^(−1)[TiO_(2)-NWs]at 0.5 C).And it is worth mentioning that the reversible capacity of up to 500 cycles can still be maintained at 85 mAh g^(−1)at a high rate of 10 C.Meanwhile,we also further analyzed the sodium storage mechanism through the ex-situ X-ray powder diffraction test,which proved the high structural stability of TiO_(2)(B)-BH in the process of sodiumization/de-sodiumization.This strategy of uniformly integrating nanosheets into a matrix can also be extended to preparing electrode material structures of other energy devices.
基金
the Natural Science Foundation of Beijing Municipality(L172036)
Joint Funds of the Equipment Pre-Research and Ministry of Education(6141A020225)
Par-Eu Scholars Program,Science and Technology Beijing 100 Leading Talent Training Project,the Fundamental Research Funds for the Central Universities(2020FR002,2020MS023,2020MS028,2021MS028)
the NCEPU"Double First-Class"Program,the State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources(LAPS21004).