期刊文献+

基于改进EWT和LogitBoost集成分类器的地震事件分类识别算法 被引量:2

Classification and recognition algorithm for earthquake events based on the improved EWT and LogitBoost ensemble classifier
下载PDF
导出
摘要 快速、准确地识别天然地震和人工爆破事件是地震台网监测的重要工作之一,也是提高地震观测记录质量、开展地震研究工作的重要基础。针对反向传播神经网络、支持向量机等主流分类识别方法在地震事件分类识别应用上的不足,提出一种基于改进EWT和LogitBoost集成分类器的地震事件分类识别算法。首先,基于S谱能量曲线对传统经验小波变换进行改进,将信号自适应分解为按频率和能量分布的本征模函数;其次,提取P波与S波最大振幅比,前4个本征模函数的香农熵、对数能量熵,以及去噪后重构信号主频等特征;最后,采用基于集成学习LogitBoost的决策树集成分类器进行分类。实验结果表明,所提算法具有较高的鲁棒性,能有效解决样本不足的问题,识别准确率达93.1%以上,比集成学习AdaBoost、反向传播神经网络和支持向量机等方法提高了1%以上,且分类识别效果好。 The rapid and accurate identification of natural earthquakes and artificial blasting events is one of the most important tasks of seismic monitoring networks and is also an important basis for improving the quality of seismic observation records and conducting seismic research.In view of the shortcomings of the mainstream classification and recognition methods,such as the back propagation(BP)neural network and support vector machine(SVM),a classification and recognition algorithm for earthquake events based on the improved empirical wavelet transform(EWT)and LogitBoost ensemble classifier was proposed.First,the traditional EWT was improved based on the S-transform spectrum energy curve,and the signal was adaptively decomposed into several intrinsic mode functions.Then,the maximum amplitude ratio of the P-wave to S-wave,the Shannon entropy and logarithmic energy entropy of the first four intrinsic mode functions,and the main frequency of the reconstructed signal after de-noising were extracted.Finally,a decision tree ensemble classifier based on LogitBoost was designed to classify earthquake events.Experimental results show that the proposed algorithm has good robustness and can effectively solve the problem of insufficient samples,and the classification accuracy rate is over 93.1%.Compared with the ensemble learning AdaBoost,BP neural network,and SVM,the classification accuracy of the proposed algorithm is improved by more than 1%and has an excellent classification ability.
作者 孟娟 张家声 李亚南 MENG Juan;ZHANG Jiasheng;LI Ya'nan(School of Electronic Science and Control Engineering,Institute of Disaster Prevention,Sanhe 065201,Hebei,China;Institute of Geophysical and Geochemical Exploration,Chinese Academy of Geological Sciences,Langfang 065000,Hebei,China)
出处 《地震工程学报》 CSCD 北大核心 2022年第5期1233-1242,共10页 China Earthquake Engineering Journal
基金 中央高校基本科研业务费项目(ZY20215138) 河北省教育厅高等学校科学研究计划项目(QN2020527)。
关键词 改进EWT LogitBoost 集成学习 天然地震 人工爆破 improved EWT LogitBoost ensemble learning natural earthquake artificial blasting
  • 相关文献

参考文献12

二级参考文献131

共引文献175

同被引文献17

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部