期刊文献+

基于面向对象的多源卫星遥感影像玉米倒伏面积提取 被引量:3

Object-oriented Extraction of Maize Fallen Area based on Multi-source Satellite Remote Sensing Images
原文传递
导出
摘要 风灾引起的玉米倒伏可能导致玉米大量减产,利用遥感技术准确监测玉米倒伏面积与空间分布信息对灾情的评估非常重要。利用Planet和Sentinel-2影像分别结合面向对象与基于像元方法提取研究区玉米倒伏,同时评估了不同影像特征(光谱特征、植被指数和纹理特征)与不同分类方法(支持向量机法SVM、随机森林法RF和最大似然法MLC)对玉米倒伏提取精度的影响。结果表明:(1)使用高空间分辨率的Planet影像进行玉米倒伏提取的精度普遍高于Sentinel-2影像;(2)从分类精度和面积精度来看,Planet影像的光谱特征+植被指数+均值特征结合面向对象RF分类,总体精度和Kappa系数分别为93.77%和0.87,面积的平均误差最低为4.76%;(3)采用Planet和Sentinel-2影像结合面向对象分类提取玉米倒伏精度高于基于像元分类。研究不仅分析了面向对象方法的优势,还评估了使用不用影像数据结合面向对象方法的适用性,可以为遥感提取作物倒伏相关研究提供一定的借鉴。 Maize lodging caused by wind disaster may lead to a large reduction in maize production. Using remote sensing technology to accurately monitor maize lodging area and spatial distribution information is very im-portant for disaster assessment.In this paper,Planet and Sentinel-2 images are combined with object-oriented and pixel-based methods to extract maize lodging in the study area,and different image features(spectral features,vegetation index and texture features) and different classification methods(support vector machine SVM,Random forest method RF and maximum likelihood method MLC)influence on the extraction accuracy of corn lodging. The results show that:(1) The accuracy of corn lodging extraction using Planet images with high spatial resolution is generally higher than that of Sentinel-2 images;(2) From the perspective of classification accuracy and area accuracy,the spectral features,vegetation index,and mean feature of Planet image combined with object-oriented RF classification,the overall accuracy and Kappa coefficient are 93.77% and 0.87,respectively,and the average area error is the lowest 4.76%;(3)The accuracy of extracting maize lodging using Planet and Sentinel-2 images combined with object-oriented classification is higher than that of pixel-based classification. This research not only analyzes the advantages of object-oriented methods,but also evaluates the applicability of using different image data combined with object-oriented methods,which can provide a certain reference for remote sensing to extract crop lodging related research.
作者 朱厚文 罗冲 官海翔 张新乐 杨嘉鑫 宋梦宁 刘焕军 Zhu Houwen;Luo Chong;Guan Haixiang;Zhang Xinle;Yang Jiaxin;Song Mengning;Liu Huanjun(College of Public Administration and law,Northeast Agricultural University,Harbin 150030,China;Northeast Institute of Geography and Agricultural Ecology,Chinese Academy of Sciences,Changchun 130012,China)
出处 《遥感技术与应用》 CSCD 北大核心 2022年第3期599-607,共9页 Remote Sensing Technology and Application
基金 国家自然科学基金项目(41671438) 王宽诚教育基金会资助。
关键词 遥感监测 玉米倒伏 特征组合 像元 面向对象 Remote sensing monitoring Maize lodging Feature combination Pixel Oriented object
  • 相关文献

参考文献15

二级参考文献262

共引文献222

同被引文献62

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部