摘要
为支撑陶瓷复合装甲的结构设计,研究不同厚度比陶瓷/金属复合装甲的弹道防护性能。通过陶瓷/金属复合结构抗侵彻性能弹道实验及数值模拟研究,完成有限元-光滑粒子流体动力学耦合计算模型的校验;模拟长杆弹撞击陶瓷复合装甲过程,分析装甲陶瓷与金属背板厚度比对界面击溃效应影响,获取不同厚度比陶瓷/金属复合装甲抗弹性能。研究结果表明:陶瓷复合装甲存在两种主要防护机制;当弹体速度小于1000 m/s,随着陶瓷厚度从15 mm增加至25 mm,复合装甲的界面击溃驻留时间能够提高一倍以上,期间弹体耗能最高可达50%;当弹体速度大于1000 m/s时,侵彻阶段的耗能占据弹体动能损失的主导,期间最高耗能可达85%;当金属与陶瓷的厚度比为2∶1时,复合结构使弹体具有较长的界面驻留时间,并实现较高的弹道防护效能。
The ballistic performance of ceramic armor systems with different structures is studied to optimize the structural design of the armor.The FEM-SPH coupling calculation model is verified through ballistic experiments and numerical simulations.The process of a long-rod projectile impacting a ceramic-metal composite armor is then simulated,and the influence of different thickness ratios of ceramic to the metal back plate on interface breakdown analyzed.The results show two main protective mechanisms of the ceramic composite armor.When the projectile velocity s is less than 1000 m/s and the ceramic thickness is increased from 15 mm to 25 mm for a bi-layer ceramic composite armor with a total thickness of 30 mm,the dwell time of the composite armor would be more than doubled,and the maximum energy consumption of the projectile body can reach 50%.When the velocity of the projectile exceeds 1000 m/s,the energy consumption is dominant in the penetration phase,and the maximum energy absorption during penetration is 85%.When the composite armor has a metal to ceramic thickness ratio of 2∶1,the missile body stays longer on the interface and achieves a relatively high ballistic protection efficiency.Our results can be used as a reference for the design of armor structures.
作者
司鹏
白帆
刘彦
闫俊伯
黄风雷
SI Peng;BAI Fan;LIU Yan;YAN Junbo;HUANG Fenglei(State Key Laboratory of Explosive Science and Technology,Beijing Institute of Technology,Beijing 100081,China;Chongqing Innovation Center,Beijing Institute of Technology,Chongqing 401120,China)
出处
《兵工学报》
EI
CAS
CSCD
北大核心
2022年第9期2318-2329,共12页
Acta Armamentarii
基金
国家自然科学基金青年科学基金项目(12101050)。
关键词
陶瓷/金属复合装甲
厚度比
界面击溃
抗弹性能
ceramic/metal composite armor
thickness ratio
interface defeat
ballistic performance