期刊文献+

一种负载预测感知的虚拟机合并与迁移策略 被引量:1

VIRTUAL MACHINE CONSOLIDATION AND MIGRATION STRATEGY BASED ON WORKLOAD PREDICTION-AWARE
下载PDF
导出
摘要 虚拟机合并和迁移可以有效降低云数据中心的能耗并提高资源利用率。然而,已有算法多集中于根据当前的资源需求最小化活跃主机数量,忽略了负载变化情况下的未来资源需求,这样会生成过多无用虚拟机迁移,增加SLA违例风险。为了解决这一问题,同步考虑当前和未来的资源利用请求,提出一种新的虚拟机合并算法。该算法利用回归模型对主机和虚拟机的CPU占用进行预测,在虚拟机迁移源主机和目标主机的选择上,同步考虑了当前超载和预测超载问题,较好地避免了无用虚拟机迁移。通过不同类型的负载对算法进行了实验分析。结果表明,与基准的启发式算法和元启发式方法相比,该算法不仅可以降低主机能耗,还可以同步减少虚拟机迁移量和降低SLA违例。 Virtual machine consolidation and migration can effectively reduce energy consumption and enhance resource utilization.However,the existing algorithms mostly focus on the number of active physical hosts minimization according to their current resource requirements and neglect the future resource demands,which can lead to excessive unnecessary virtual machine migration and increase the risk of SLA violations.To solve this problem,a new virtual machine consolidation algorithm is presented that takes into account both the current and future utilization of resources.Our algorithm predicted the CPU workload of the host and virtual machine simultaneously through the regression model,and then synchronously considered the current overload and predicted overload in the selection of the virtual machine migration source host and target host,thus avoiding the useless virtual machine migration.The algorithm was simulated by the different types of workload.The results show that compared with other heuristic and meta-heuristic algorithms,our algorithm can not only reduce the overall energy consumption of the host,but also synchronously reduce virtual machine migration number and lower the SLA violations.
作者 陈平 李攀 刘秋菊 Chen Ping;Li Pan;Liu Qiuju(Jiyuan Vocational and Technical College,Jiyuan 459000,Henan,China;Zhengzhou Institute of Technology,Zhengzhou 450044,Henan,China)
出处 《计算机应用与软件》 北大核心 2022年第9期128-136,144,共10页 Computer Applications and Software
基金 2018河南省高等学校青年骨干教师培训项目(2018GGJS260) 济源市科技攻关项目(18021010) 济源职业技术学院院级重点项目(JYZY-2022-77)。
关键词 虚拟机合并 虚拟机迁移 回归模型 服务等级协议 云数据中心 Virtual machine consolidation Virtual machine migration Regression model Service level degree Cloud data center
  • 相关文献

参考文献2

二级参考文献16

  • 1BIRKE R, CHEN L Y, SMIRNI E. Data centers in the cloud: a large scale performance study [ C]// Proceedings of the 2013 IEEE Sixth International Conference on Cloud Computing. Piscataway, NJ: IEEE, 2012:336 -343.
  • 2GANDHI A, HARCHOL-BALTER M, DAS R, et al. Optimal pow- er allocation in server farms [ J]. ACM SIGMETRICS Performance Evaluation Review, 2009, 37(1) : 157 - 168.
  • 3BELOGLAZO A , ABAWAJ J , BUYYA R . Energy - aware resource allocation heuristics for efficient management of data centers for cloud computing [ J]. Future Generation Computer Systems, 2012, 28(5): 755-768.
  • 4BELOGLAZOV A, BUYYA R. Optimal online deterministic algo- rithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in cloud data centers [ J] Concurrency and Computation: Practice and Experience, 2012, 24 (13) : 1397 - 1420.
  • 5BELOGLAZOV A, BUYYA R. Managing overloaded hosts for dy- namic consolidation of virtual machines in cloud data centers under quality of service constraints [ J]. IEEE Transactions on Parallel and Distributed Systems, 2013, 24(7): 1366-1379.
  • 6CHEN L, SHEN H, SAPRA K. Distributed autonomous virtual re- source management in datacenters using finite-Markov decision process [ C]//SOCC 2014: Proceedings of the 2014 ACM Symposi- um on Cloud Computing. New York: ACM, 2014:1 - 13.
  • 7FELLER E, RILLING L, MORIN C. Energy-aware ant colony based workload placement in clouds [ C ]// Proceedings of the 2011 IEEE/ACM 12th International Conference on Grid Compu- ting. Washington, DC: IEEE Computer Society, 2011 : 26 - 33.
  • 8GARG S K, TOOSI A N, GOPALAIYENGAR S K, et al. SLA- based virtual machine management for heterogeneous workloads in a cloud datacenter [ J]. Journal of Network and Computer Applica- tions, 2014, 45:108-120.
  • 9MANN Z A. Rigorous results on the effectiveness of some heuristics for the consolidation of virtual machines in a cloud data center [ J]. Future Generation Computer Systems, 2015, 51 : 1 - 6.
  • 10CALHEIROS R N, RANJAN R, BELOGLAZOV A, et al. Cloud- Sim: a toolkit for modeling and simulation of cloud computing envi- ronments and evaluation of resource provisioning algorithms [ J]. Software: Practice and Experience, 201 l, 41 (1) : 23 - 50.

共引文献9

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部