期刊文献+

融合反向传播的无参考模糊图像质量评价 被引量:2

NO-REFERENCE QUALITY ASSESSMENT OF BLUR IMAGES BASED ON BACK-PROPAGATION
下载PDF
导出
摘要 针对图像中的高斯模糊失真,提出一种融合反向传播的无参考模糊图像质量评价方法。利用分水岭算法标记出的连通域计算密度差值;利用Tamura纹理特征模型和拉普拉斯算子分别度量图像的粗糙度和清晰度;将提取的密度差、粗糙度和清晰度输入反向传播(Back-Propagation,BP)神经网络进行训练,实现对高斯模糊失真图像的质量预测。实验证明,该方法在质量评价以及一致性方面均优于对比方法。此外,该方法解决了实际应用中因缺乏参考图像而不能进行质量评价的问题。 Aimed at the Gaussian blur distortion in the distorted images,a no-reference quality assessment of blur images based on back-propagation is proposed.The connected component was marked by the watershed algorithm and the density difference of them was calculated.The roughness and the sharpness of the image were extracted by the Tamura texture feature model and the Laplace operator,respectively.The density difference,the roughness and the sharpness were input to back-propagation neural network for training,so as to accurately predict the quality score of Gaussian blur image.Experimental results show that,this algorithm outperforms the comparison methods in on image quality evaluation and consistency.In addition,it solves the problem that quality evaluation cannot be carried out due to the lack of reference images in practical applications.
作者 赵月 王来花 王伟胜 乔丽娟 阮泉 Zhao Yue;Wang Laihua;Wang Weisheng;Qiao Lijuan;Ruan Quan(College of Software,Qufu Normal University,Qufu 273165,Shandong,China)
出处 《计算机应用与软件》 北大核心 2022年第9期248-254,306,共8页 Computer Applications and Software
基金 国家自然科学基金青年基金项目(61601261) 山东省自然科学基金项目(ZR2016FB20)。
关键词 BP神经网络 高斯模糊 图像质量评价 无参考 连通域 粗糙度 清晰度 Back-Propagation(BP)neural network Gaussian blur Image quality assessment(IQA) No-reference Connected component Coarseness Sharpness
  • 相关文献

参考文献8

二级参考文献68

  • 1马苗,郝重阳,韩培友,樊养余,黎新伍.基于灰色关联分析的图像保真度准则[J].计算机辅助设计与图形学学报,2004,16(7):978-983. 被引量:22
  • 2张萍,蒋秀琴,苗春兰,邹向荣.爆破、矿震与地震的波谱差异[J].地震地磁观测与研究,2005,26(3):24-34. 被引量:37
  • 3杨春玲,旷开智,陈冠豪,谢胜利.基于梯度的结构相似度的图像质量评价方法[J].华南理工大学学报(自然科学版),2006,34(9):22-25. 被引量:43
  • 4王涛,高新波,张都应.一种基于内容的图像质量评价测度[J].中国图象图形学报,2007,12(6):1002-1007. 被引量:15
  • 5VQEG. Final report from VQEG on the validation of objective models of video quality assessment[OL]. (2000-3-15). Http://www.its.bldrdoc.gov/vqeg/projects/fr tv _phaseII/do wnloads/VQEGII_Final_Peport.pdf.
  • 6Wang Z, Liaalg L, and Alan C B. Video quality assessment using structural distortion measurement[C]. International Conference on Image Processing, Rochester, NY, USA, 2002, 3: 65-68.
  • 7Yu Z, Wu H R, and Winkler S, et al.. Vision-model-based impairment metric to evaluate blocking artifact in digital video[J]. Proceeding of the IEEE, 2002, 90(1): 154-169.
  • 8Nill N B and Bouzas B H. Objective image quality measure derived from digital image power spectra[J]. IEEE Signal Processing Letter, 2002, 9(3): 388-392.
  • 9Wang Z, Alan C B, and Hamid R S. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
  • 10ITU-R Recommendation BT.500-10. Methodology for the subjective assessment of the quality of the television pictures[S], 2000.

共引文献220

同被引文献20

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部