期刊文献+

基于观测空间关系提取的多智能体强化学习 被引量:1

Multi-agent reinforcement learning based on observation relation extraction
下载PDF
导出
摘要 针对多智能体系统(multi-agent systems,MAS)中环境具有不稳定性、智能体决策相互影响所导致的策略学习困难的问题,提出了一种名为观测空间关系提取(observation relation extraction,ORE)的方法,该方法使用一个完全图来建模MAS中智能体观测空间不同部分之间的关系,并使用注意力机制来计算智能体观测空间不同部分之间关系的重要程度。通过将该方法应用在基于值分解的多智能体强化学习算法上,提出了基于观测空间关系提取的多智能体强化学习算法。在星际争霸微观场景(StarCraft multi-agent challenge,SMAC)上的实验结果表明,与原始算法相比,带有ORE结构的值分解多智能体算法在收敛速度和最终性能方面都有更好的性能。 In order to overcome the challenges of policy learning in MAS,such as the unstable environment and the interaction of agent decisions,this paper proposed a method named ORE,which used a complete graph to model the relationship between different parts of each agent’s observation,and took advantage of the attention mechanism to calculate the importance of the relationship between different parts of each agent’s observation.By applying the above method to multi-agent reinforcement learning algorithms based on value decomposition,this paper proposed multi-agent reinforcement learning algorithms based on observation relation extraction.Experimental results on SMAC show the proposed algorithms with ORE leads to better perfor-mance than the original algorithms in terms of both convergence speed and final performance.
作者 许书卿 臧传治 王鑫 刘鼎 刘玉奇 曾鹏 Xu Shuqing;Zang Chuanzhi;Wang Xin;Liu Ding;Liu Yuqi;Zeng Peng(State Key Laboratory of Robotics,Shenyang Institute of Automation,Chinese Academy of Sciences,Shenyang 110016,China;Key Laboratory of Networked Control Systems,Chinese Academy of Sciences,Shenyang 110016,China;Innovation Institute of Robotics&Intelligent Manufacturing,Chinese Academy of Sciences,Shenyang 110016,China;University of Chinese Academy of Sciences,Beijing 100049,China;Shenyang University of Technology,Shenyang 110023,China)
出处 《计算机应用研究》 CSCD 北大核心 2022年第10期2957-2961,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(92067205) 辽宁省自然科学基金资助项目(2020-KF-11-02) 机器人学国家重点实验室开放课题(2020-Z11)。
关键词 多智能体 强化学习 注意力机制 观测空间 multi-agent reinforcement learning attention mechanism observation
  • 相关文献

参考文献2

二级参考文献5

共引文献65

同被引文献15

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部