期刊文献+

基于Landmark模型动态预测老年人轻度认知障碍向阿尔茨海默病的转化 被引量:1

Dynamic Prediction of Conversion from Mild Cognitive Impairment to Alzheimer′s Disease based on Landmark Model
下载PDF
导出
摘要 目的利用Landmark模型对轻度认知障碍(mild cognitive impairment,MCI)的老年人转为阿尔茨海默病(Alzheimer′s disease,AD)的概率进行动态估计,为早期发现高危AD患者提供帮助。方法利用312名MCI个体的纵向和生存数据构建三个landmark模型(模型1、模型2和模型3)。利用Brier得分和C指数评估模型的预测性能并选出最优模型进行动态预测。结果模型3的预测性能较好,且FAQ、RAVLT-immediate和海马体体积是MCI转为AD重要的预测变量。在不同随访年,利用模型3和这三个预测变量预测两名MCI个体两年后转为AD的概率。MCI个体1转为AD的概率逐年下降,属于AD低危个体;而MCI个体2转为AD的概率逐年上升,属于AD高危个体。结论本研究对MCI个体向AD转化的概率进行动态估计,可识别AD高危群体。 Objective To predict chances of conversion from mild cognitive impairment(MCI)to Alzheimer′s disease(AD)dynamically,and provide a methodological reference for early detection of high-risk AD patients.Methods We established three landmark models(model 1,model 2 and model 3)based on longitudinal and survival data of 312 MCI individuals and evaluated models by C-index and Brier score.The better model was used to predict conversion dynamically.Results The model 3 had better predictive performance and RAVLT-immediate,FAQ and hippocampal volume were significant predictors for conversion from MCI to AD.We predicted the 2-year chances of conversion to AD among two MCI individuals with model 3 and three significant predictors.The chances of conversion to AD of MCI individual 1 were decreasing annually,and he was at low risk of AD.While the chances of conversion to AD of MCI individual 2 were increasing annually,and he was at high risk of AD.Conclusion Our study predicted chances of conversion from MCI to AD and was helpful to identify high-risk AD individuals.
作者 张嘉嘉 秦瑶 韩红娟 葛晓燕 崔靖 白文琳 余红梅 Zhang Jiajia;Qin Yao;Han Hongjuan(Department of Health Statistics,School of Public Health,Shanxi Medical University 030000,Taiyuan)
出处 《中国卫生统计》 CSCD 北大核心 2022年第4期534-537,共4页 Chinese Journal of Health Statistics
基金 国家自然科学基金资助项目(81973154)。
关键词 阿尔茨海默病 轻度认知障碍 Landmark模型 动态预测 Alzheimer′s disease Mild cognitive impairment Landmark model Dynamic prediction
  • 相关文献

参考文献1

二级参考文献7

  • 1[1]Jack CR,Petersen RC,O'Brien PC, et al. MRI based hippocampal volumetry in the diagnosis of Alzheimer's disease [J]. Neurology, 1992,42(1): 183.
  • 2[2]Kesslak JP, Nalcioglu O, Cotman CW. Quantification of magnetic rasonace scans for hippocampal and parahippocampal atrophy in Alzheimer' s disease [J]. Neurology,1991,41(1):51.
  • 3[3]Jack CR, Sharbrough FW, Twomey CK, et al. Temporal lobe seisures:laterlization with MRI volume measurements of the hippocampal forrnation [J]. Radiology, 1990, 175(2):423.
  • 4[4]Jackson GD, Berkvic SF, Tree BM, et al. Hippocampal sclerosis can be reliably detected by magnetic resonance imaging[J].Neurology, 1990,40(12):1869.
  • 5[5]Jack CR, Twomey CK, Zinsmeiser AR, et al. Anterior temporal lobes and hippocampal formations:normative volumetric measurements from MRI imaging in young adults [J]. Radiology, 1989,172(2):549.
  • 6[6]Jackson GD, Connelly A, Duncan JS, et al. Detection of hippocampal pathology in intractable partial epilepsy: increased sensitivity with quantitative magnetic resonance T2 relaximetry[J]. Neurology, 1993,43(9):1793.
  • 7[7]Watson T, Andermann F, Gloor P. Anatomic basis of amygdaloid and hippocampal volume measurement by magnetic resonace imaging [J]. Neurology, 1992, 42 (9):1743.

共引文献8

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部