期刊文献+

SDN中基于MS-KNN算法的LFA检测方法 被引量:1

LFA detection method based on MS-KNN algorithm in SDN
下载PDF
导出
摘要 针对一种新型的DDoS攻击—链路泛洪攻击(link-flooding attack,LFA)难以检测的问题,提出了SDN中基于MS-KNN(mean shift-K nearest neighbor)方法的LFA检测方法。首先通过搭建SDN实验平台,模拟LFA并构建LFA数据集;然后利用改进的加权欧氏距离均值漂移(mean shift,MS)算法对LFA数据集进行分类;最后利用K近邻(K nearest neighbor,KNN)算法判断分类结果中是否具有LFA数据。实验结果表明,相较于KNN算法,利用MS-KNN不仅得到了更高的准确率,同时也得到了更低的假阳性率。 To address the problem that a new type of DDoS attack,LFA is difficult to detect,this paper proposed an LFA detection method based on MS-KNN method in SDN.Firstly,this paper simulated LFA and constructed LFA dataset by building an SDN experiment platform.Secondly,it used an improved weighted Euclidean distance MS algorithm to classify the LFA dataset.Finally,it used the KNN algorithm to determine whether LFA data were included in the classification results.The experimental results show that MS-KNN not only obtains a higher accuracy rate,but also has a lower false positive rate compared with the KNN algorithm.
作者 孙文悦 王昌达 Sun Wenyue;Wang Changda(School of Computer Science&Communication Engineering,Jiangsu University,Zhenjiang Jiangsu 212013,China)
出处 《计算机应用研究》 CSCD 北大核心 2022年第9期2832-2836,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(62072217,61672269)。
关键词 链路泛洪攻击 SDN 均值漂移算法 K近邻算法 MS-KNN link-flooding attack(LFA) SDN mean shift(MS) K nearest neighbor(KNN) mean shift-K nearest neighbor(MS-KNN)
  • 相关文献

参考文献2

二级参考文献3

共引文献8

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部