摘要
目的评估不同观察者间上皮异常增生严重程度判定的一致性,为进一步开发客观性更高的判定系统提供理论依据。方法收集四川大学华西口腔医院口腔黏膜病科2013年5月至2018年5月60例口腔白斑病患者的数字化病理切片图像60张,以及四川大学华西口腔医院口腔疾病研究国家重点实验室2004年9月至2014年9月93例口腔白斑病患者的组织芯片图像239张,用于评价上皮异常增生分级的一致性;并从以上60张数字化病理切片图像中制作1000张图块,分别为500张小尺寸图块(224像素×224像素)与500张大尺寸图块(1024像素×1024像素),用于评价特征识别的一致性。分级与特征识别由来自国内两个三级甲等口腔专科医院口腔病理科的3名病理专家完成。使用Kappa系数量化病理专家的观察者间一致性。结果上皮异常增生分级的一致性很弱(病理切片组Kappa=0.30,组织芯片组Kappa=0.30),小尺寸图块中特征识别无一致性(结构特征中位数Kappa=0.14,细胞特征中位数Kappa=0.18),大尺寸图块中特征识别一致性很弱(结构特征中位数Kappa=0.25,细胞特征中位数Kappa=0.25)。结论口腔白斑病上皮异常增生分级与特征识别的一致性总体较差,开发客观性更高的基于人工智能的上皮异常增生程度判定系统,或有助于提高不同观察者间上皮异常增生严重程度判定的一致性。
Objective To evaluate the inter-observer agreement of the severity of oral epithelial dysplasia in oral leukoplakia,providing a theoretical basis for the development of a more objective grading system.Methods This study included 60 digital pathological slides of oral leukoplakia from Oral Medicine Department of West China Hospital of Stomatology,Sichuan University,and 239 tissue microarray images of oral leukoplakia from State Key Laboratory of Oral Diseases,Sichuan University,to evaluate the agreement of grading.Besides,1000 patches were generated from the 60 digital pathological slides and were divided into 500 small-sized patches(224 pixel×224 pixel)and 500 large-sized patches(1024 pixel×1024 pixel),to evaluate the agreement of feature detection.Gradings and feature detections were completed by three pathological experts from the oral pathology departments of two Grade 3,Class A stomatological hospitals in China.Kappa coefficient was used to quantify the inter-observer agreement among pathologists.Results Minimal agreement was found in the grading of oral epithelial dysplasia among pathologists(Kappa=0.30 in the pathological slide group,Kappa=0.30 in the tissue microarray group).None agreement was found in feature detection within the small-sized patches group(median Kappa=0.14 for architectural features,median Kappa=0.18 for cytological features),and minimal agreement was found in feature detection within the large-sized patches group(median Kappa=0.25 for architectural features,median Kappa=0.25 for cytological features).Conclusions Generally,the agreement of grading and feature detection of oral epithelial dysplasia in oral leukoplakia is poor.Development of a more objective grading system of oral epithelial dysplasia based on artificial intelligence may be helpful to improve the agreement.
作者
彭嘉宽
但红霞
徐浩
曾昕
陈谦明
Peng Jiakuan;Dan Hongxia;Xu Hao;Zeng Xin;Chen Qianming(Department of Oral Medicine,West China Hospital of Stomatology,Sichuan University&State Key Laboratory of Oral Diseases&National Clinical Research Center for Oral Diseases,Chengdu 610041,China;Department of Oral Medicine,Stomatology Hospital,School of Stomatology&Zhejiang University School of Medicine&Clinical Research Center for Oral Diseases of Zhejiang Province&Key Laboratory of Oral Biomedical Research of Zhejiang Province&Cancer Center of Zhejiang University,Hangzhou 310006,China)
出处
《中华口腔医学杂志》
CAS
CSCD
北大核心
2022年第9期921-926,共6页
Chinese Journal of Stomatology
基金
国家自然科学基金(U19A2005)
中国医学科学院医学与健康科技创新工程临床与转化医学研究基金(2020-I2M-C&T-A-023)。
关键词
白斑
口腔
病理学
口腔
上皮异常增生
数字化病理切片
组织芯片
观察者间一致性
Leukoplakia,oral
Pathology,oral
Epithelial dysplasia
Digital pathological slide
Tissue microarray
Inter-observer agreement