摘要
阐述针对复杂大规模未知数据集实施有效检测,生成对抗网络模型的生成器和判别器,提升模型的数据训练能力和降低误检、漏检率,探讨生成对抗网络模型的机器学习方法。
This paper describes how to implement effective detection for complex large-scale unknown data sets, generate generators and discriminators of adversary network models, improve the data training ability of models and reduce the rate of false detection and missed detection, and discusses the machine learning method for generating adversary network models.
作者
朱昱林
ZHU Yulin(Henan College of Surveying and Mapping,Henan 451464,China)
出处
《集成电路应用》
2022年第8期124-125,共2页
Application of IC
关键词
对抗网络模型
数据训练
机器学习
countermeasure network model
data training
machine learning