期刊文献+

结合重构和预测模型的无监督视频异常检测算法

Unsupervised video anomaly detection algorithm combining reconstruction and prediction model
下载PDF
导出
摘要 针对目前视频异常检测领域使用单个重构模型无法完整重构图像、单个预测模型易受噪声扰动等问题,提出一种结合重构和预测模型的无监督视频异常检测算法。使用预测模型,输入当前多帧视频帧来精准预测下一帧图像,能够扩大正常和异常的区分度;使用重构模型提高网络的鲁棒性;使用结合残差网络和U-net网络的生成对抗网络(GAN)来处理异常,避免网络出现梯度爆炸和梯度消失等问题。实验证明:提出的算法能提高视频异常检测的准确性和鲁棒性,实现了监控视频中异常事件的自动监督。 Aiming at the problems that the current video anomaly detection field cannot reconstruct the image completely using a single reconstruction model, and is susceptible to noise disturbance using a single prediction model, an unsupervised video anomaly detection algorithm that combining reconstruction and prediction models is proposed.Using the prediction model to input the current multi-frame video frame to accurately predict the next frame image, which can expand the distinction between normal and abnormal;using the reconstruction model to improve the robustness of the network;using the generative adversarial network(GAN) which is the combination of residual network and U-net network to deal with anomalies to avoid problems such as gradient explosion and gradient disappearance.Experiments prove that the proposed algorithm can improve the accuracy and robustness of video anomaly detection, and realize the automatic supervision of abnormal events in the surveillance video.
作者 周伟 姜晓燕 朱凯赢 蒋光好 于润润 吴益 ZHOU Wei;JIANG Xiaoyan;ZHU Kaiying;JIANG Guanghao;YU Runrun;WU Yi(School of Electronic and Electrical Engineering,Shang ai University of Engineering Science,Shanghai 201620,China)
出处 《传感器与微系统》 CSCD 北大核心 2022年第10期108-111,116,共5页 Transducer and Microsystem Technologies
关键词 深度学习 异常检测 重构模型 预测模型 生成对抗网络 deep learning anomaly detection reconstruction model prediction model generative adversarial network(GAN)
  • 相关文献

参考文献4

二级参考文献19

  • 1赵国富,曲国庆.聚类分析中CLARA算法的分析与实现[J].山东理工大学学报(自然科学版),2006,20(2):45-48. 被引量:9
  • 2王杰,李冬梅.数据挖掘在网络入侵检测系统中的应用[J].微计算机信息,2006,22(04X):73-75. 被引量:15
  • 3赵东东,宗瑜,江贺,张宪超.一种多空间聚类算法[J].小型微型计算机系统,2006,27(12):2297-2300. 被引量:6
  • 4Zhang T, Ramakrishnan R, Livny M. An efficient data clustering method for very large databases[ C ]//Proc of the 1996 ACM SIGMOD Int'l Conf on Management of Data, Montreal,Quebec : ACM Press, 1996 : 103 -114.
  • 5Guha S, Rastogi R, Shim K. An efficient clustering algorithm for large databases[ C]//Proc of 1998 ACM SIGMOD Int'l Conf on Management of Data, Seattle, Washington : ACM Press, 1998 : 73 - 84.
  • 6Karypis G, Han E H, Kumarl V. A hierarchical clustering algorithm using dynamic modeling[ J ]. Computer, 1999,32 (8) :68 -75.
  • 7Venkatesh Saligrama,Janusz Konrad,Pierre- Marc Jodoin. Video Anomaly Identification-A statistical approach[J].IEEE Signal Processing magzine SEP,2010.
  • 8A. Adam,E. Rivlin,I. Shimshoni,D.Reinitz. Robust realtimeunusual event detection using multiple fixed-location monitors[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2008,(03):555-560.
  • 9P.-M. Jodoin,J.Konrad,V. Saligrama. Modeling backgroundactivity for behavior subtraction[A].2008.
  • 10J.McHugh,J.Konrad,V.Saligrama,P.-M Jodoin. Foreground-adaptivebackground subtraction[J].IEEE Signal Processing Letters,2009,(05):390-393.

共引文献6

  • 1郭俞锗,崔娜(指导).智能笔[J].少年发明与创造(小学版),2022(14):16-16.
  • 2王丽君.西德HIMA系统[J].石油化工自动化,1979(1):51-66.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部