摘要
针对轮毂电机电动汽车非簧载质量增加而引起的整车行驶平顺性和操纵稳定性恶化的问题,提出一种基于模型预测控制(MPC)理论的半主动悬架控制方法。建立由轮毂电机模型和空气悬架模型组成的九自由度整车系统模型;确定了车辆行驶平顺性和操纵稳定性的多目标函数及约束条件,为提高系统的垂向性能,提出了在处理有限时域内带有约束最优问题具有突出优势的MPC控制策略。仿真结果表明:相比于未控制的半主动悬架,基于MPC控制理论的半主动悬架对轮毂电机电动汽车的簧载质量垂向振动加速度、轮毂电机偏心距、轮胎动载荷、侧倾角速度和俯仰角速度的均方根值及其功率谱密度提升效果明显,有效地改善了轮毂电机电动汽车的行驶平顺性和操纵稳定性。
To study the deterioration of vehicle handling stability and driving comfort caused by the increase in unsprung mass of hub-motor electric vehicles(HM-EVs), a semi-active suspension control method based on model predictive control(MPC) theory is proposed. A nine-degree-of-freedom vehicle system model consisting of in-wheel hub motor model and an air suspension model is established. The multi-objective functions and constraints of vehicle ride comfort and handling stability are determined. In order to improve the vertical performance of the system, the MPC control strategy is proposed with outstanding advantages for dealing with constrained optimal problems in the finite time domain. The simulation results show that: compared with uncontrolled semi-active suspension, the semi-active suspension based on MPC control theory can significantly improve the root mean square value and power spectral density of sprung mass vertical vibration acceleration, hub motor eccentricity, tire dynamic load, roll angle speed and pitch angle speed of hub motor electric vehicle, and effectively improve the ride comfort and handling stability of hub motor electric vehicle.
作者
江洪
陈勃
吴楚骐
JIANG Hong;CHEN Bo;WU Chuqi(School of Mechanical Engineering,Jiangsu University,Zhenjiang 212013,China)
出处
《重庆理工大学学报(自然科学)》
CAS
北大核心
2022年第8期65-74,共10页
Journal of Chongqing University of Technology:Natural Science
基金
国家自然科学基金项目(51975254)。