摘要
作为电梯安全最后保护装置的电梯液压缓冲器,其质量检测非常重要,目前在位现场检测采用人工检测方法,准确度低,存在人身危险。该文提出一种电梯液压缓冲器隐患识别方法总体框架,重点研究基于长短时记忆(long short term memory,LSTM)网络的关键点识别、缓冲器压缩复位特征提取与模式识别技术,以及训练LSTM运动状态识别网络方法。最后,在昱奥GeN2乘客电梯及底坑安装的液压式缓冲器上搭建检测系统进行测试。结果表明:该方法对电梯液压缓冲器常见隐患识别率可达100%,有助于提高检测效率、准确度。
The quality inspection of elevator buffers,which are the last protection device for elevator safety,is very important.Currently,manual inspection methods are used for in-situ inspection,which have low accuracy and personal danger.This paper proposes an overall architecture of an elevator hydraulic buffer hidden danger identification method,focusing on LSTM-based key point identification,buffer compression and reset feature extraction and pattern recognition techniques,and training LSTM operation state identification network methods.Finally,the detection system is built and tested on ZHYO GeN2 passenger elevators and hydraulic buffers installed in the pit,showing that the method can identify up to 100%of the common hidden hazards of elevator hydraulic buffers,which helps improve the efficiency and accuracy of detection.
作者
姚懋欣
刘桂雄
梁敏健
YAO Maoxin;LIU Guixiong;LIANG Minjian(School of Mechanical and Automotive Engineering,South China University of Technology,Guangzhou 510640,China;Guangdong Institute of Special Equipment Inspection and Research Zhuhai Branch,Zhuhai 519002,China)
出处
《中国测试》
CAS
北大核心
2022年第9期36-40,共5页
China Measurement & Test
基金
广东省市场监督管理局科技项目(2020CT03)。
关键词
电梯液压缓冲器
深度学习
长短时记忆网络
隐患识别
elevator hydraulic buffers
deep learning
long short term memory
hidden hazard recognition