期刊文献+

基于k匿名数据集的鲁棒性水印技术研究 被引量:1

A Robust Watermarking Technology Based on k-Anonymity Dataset
下载PDF
导出
摘要 在大数据时代,安全可控的数据发布变得越来越重要。数据持有者在发布数据前,出于保护用户隐私的目的,通常对数据集进行k匿名处理;而出于对数据版权的保护,则需要对数据集添加水印。因此,在k匿名数据集上嵌入水印信息具有现实意义。文章以在k匿名数据集上嵌入水印为研究目标,针对k匿名数据集缺少主键和具有受限的水印空间的问题,提出了一种基于k匿名数据集的鲁棒性水印方案,方案使用准标识符属性替代主键属性作为水印定位函数的种子,在k匿名数据集中的非敏感属性上嵌入水印信息,并在水印检测阶段采用两次多数投票机制纠正水印错误。该方案在不影响k匿名隐私目标实现的前提下,实现了数据版权信息嵌入,达到了数据隐私和数据版权的双重保护。实验证明,文章提出的水印方案具有良好的鲁棒性和执行效率。 In the era of big data,secure and controlled data publishing becomes increasingly vital.When data holders publish dataset to data demanders,data holders often anonymize user’s data by k-anonymity for privacy purpose and embed watermarking in published dataset for protecting data copyright.Hence,there is a realistic demand for watermarking k-anonymity dataset.The main purpose of this paper is to embed watermark in k-anonymity dataset.However,there are two important problems for k-anonymity dataset to be addressed:the lack of primary key and the limited watermark space.In this paper,we try to address above problems by proposing a robust watermarking scheme based on k-anonymity dataset.This scheme used quasi-identifier attribute as the seed of watermark location function instead of primary key,embedded watermark information on non-sensitive attributes,and corrected error by twice majority voting in watermark detection phase.This scheme did not affect the effect of k-anonymity and realize the dual protection of privacy and copyright.Experiments showed that the watermarking scheme proposed in this paper has good robustness and efficiency.
作者 于晶 袁曙光 袁煜琳 陈驰 YU Jing;YUAN Shuguang;YUAN Yulin;CHEN Chi(Institute of Information Engineering,Chinese Academy of Sciences,Beijing 100093,China;School of CyberSecurity,University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《信息网络安全》 CSCD 北大核心 2022年第9期11-20,共10页 Netinfo Security
基金 国家重点研发计划[2020AAA0107800]。
关键词 数据库水印 版权保护 k匿名 隐私保护 database watermarking copyright protection k-anonymity privacy protection
  • 相关文献

参考文献1

二级参考文献9

  • 1Rakesh Agrawal,Peter J. Haas,Jerry Kiernan.Watermarking relational data: framework, algorithms and analysis[J].The VLDB Journal.2003(2)
  • 2Li Y,Swarup V,Jajodia S.Fingerprinting Relational Data- bases: Schemes and Specialties[].IEEE Transactions on Dependable and Secure Computing.2005
  • 3Guo F,Wang J M,Zhang Z H, et al.An Improved Algorithm to Watermark Numeric Relational Data[].Proceedings of WISA.2005
  • 4Li Y,Swarup V,Jajodia S.Constructing a Virtual Primary Key for Fingerprinting Relational Data[].DRM’.2003
  • 5Zhang Y,Zhao D N,Li D Y.Digital Watermarking for Rela- tional Databases[].Journal of PLA University of Science and Technology.2003
  • 6Gross A D.Query-Preserving Watermarking of Relational Databases and XML Documents[].PODS.2003
  • 7Agrawal R,Kiernan J.Watermarking Relational Databases[].Proceedings of the th International Conference on VLDB.2002
  • 8Sion R,Atallah M,Prabhakar S.Rights Protection for Rela- tional Data[].Proceedings of ACM SIGMOD.2003
  • 9Schneier B.Applied Cryptography[]..1996

共引文献1

同被引文献15

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部