期刊文献+

In-situ self-templating synthesis of 3D hierarchical porous carbonsfrom oxygen-bridged porous organic polymers for highperformance supercapacitors 被引量:1

原文传递
导出
摘要 It is a big challenge to well control the porous structure of carbon materials for supercapacitor application.Herein,a simple in-situ self-templating strategy is developed to prepare three-dimensional(3D)hierarchical porous carbons with good combination of micro and meso-porous architecture derived from a new oxygen-bridged porous organic polymer(OPOP).The OPOP is produced by the condensation polymerization of cyanuric chloride and hydroquinone in NaOH ethanol solution and NaCl is in-situ formed as by-product that will serve as template to construct an interconnected 3D hierarchical porous architecture upon carbonization.The large interface pore architecture,and rich doping of N and O heteroatoms effectively promote the electrolyte accessibility and electronic conductivity,and provide abundant active sites for energy storage.Consequently,the supercapacitors based on the optimized OPOP-800 sample display an energy density of 8.44 and 27.28 Wh·kg^(−1)in 6.0 M KOH and 1.0 M Na2SO4 electrolytes,respectively.The capacitance retention is more than 94%after 10,000 cycles.Furthermore,density functional theory(DFT)calculations have been employed to unveil the charge storage mechanism in the OPOP-800.The results presented in this job are inspiring in finely tuning the porous structure to optimize the supercapacitive performance of carbon materials.
出处 《Nano Research》 SCIE EI CSCD 2022年第9期7759-7768,共10页 纳米研究(英文版)
基金 the National Natural Science Foundation of China(No.21805235) China Postdoctoral Science Foundation(No.2017M610502) the Opening Foundation of Creative Platform of the Key Laboratory of the Education Department of Hunan Province(No.20K131) the Construct Program of the Key Discipline in Hunan Province is greatly acknowledged.H.C.and Z.G.L.thank the support from the Basic Research Project of the Science and Technology Innovation Commission of Shenzhen(No.JCYJ20170817110251498) Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials(No.ZDSYS20200421111401738).
  • 相关文献

参考文献9

二级参考文献33

共引文献20

同被引文献10

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部