期刊文献+

基于人工智能的风电叶片破损识别及破损面积计算的算法设计 被引量:1

Algorithm Design of Wind Power Blade Damage Identification and Damage Area Calculation Based on Artificial Intelligence
下载PDF
导出
摘要 针对风电工程中对设备保持措施中叶片破损区域的监控与识别,本文提出了一种基于YOLO神经网络识别算法以实现对航拍图片中的风场中的风机叶片破损区域进行自动识别。本文还配套设计了另外一种基于传统计算机视觉算法的破损面积提取和计算算法。通过本文提出的算法可以实现对风机叶片破损区域及其变化智能化、自动化的识别、跟踪及管理。文中算法已进行了测试实验,实验结果表明了算法具有有效性和精确性。 For monitoring and identification of the wind turbine blade damaged areas in equipment maintenance measures of the wind power projects, one kind of recognition algorithm based on YOLO neural network is proposed to automatically identifies the wind turbine blade damaged areas by the aerial photos of the wind field. Another kind of algorithm which is based on traditional computer vision algorithms has been designed to match the befor one to extract and calculate the damaged areas of the wind turbine blade. The algorithms proposed in this paper can intelligently and automatically identify,track and manage the damaged areas and their changes of the wind turbine blade. The proposed algorithms also have been tested, the experimental results showed that the designed algorithms are effective and accurate.
作者 刘平 黄小波 张沛 陈瑾娟 莫堃 汪俊 何婷 LIU Ping;HUANG Xiaobo;ZHANG Pei;CHEN Jinjuan;MO Kun;WANG Jun;HE Ting(Dongfang Electric Wind Power Co.,Ltd.,618000,Deyang,Sichuan,China;DEC Academy of Science and Technology Co.,Ltd.,611731,Chengdu,China)
出处 《东方电气评论》 2022年第3期47-50,共4页 Dongfang Electric Review
关键词 人工智能 风电叶片 破损识别 破损面积 算法 artificial intelligence wind turbine blades damage identification damage area algorithm
  • 相关文献

参考文献1

二级参考文献17

  • 1宋翠玉,李培军,杨锋杰.运用多尺度图像纹理进行城市扩展变化检测[J].国土资源遥感,2006,18(3):37-42. 被引量:22
  • 2张振勇,王萍,朱鲁,陈香菱.eCognition技术在高分辨率遥感影像信息提取中的应用[J].国土资源信息化,2007(2):15-17. 被引量:18
  • 3Singh A.Digital change detection techniques using remotely-sensed data[J].International Journal of Remote Sensing,1989,10(6):989-1003.
  • 4邓小炼.基于变化矢量分析的土地利用变化检测方法研究[D].北京:中国科学院遥感应用研究所.
  • 5Liu W,Theberge F,Daigle J F,et al.An efficient control of ultrashort laser filament location in air for the purpose of remote sensing[J].Applied Physis B:Lasers and Optics,2006,10(85):55-58.
  • 6Zhang Q,Wang J,Peng X,et al.Urban built-up land change detection with road density and spectral information from multi-temporal Landsat TM data[J].International Journal of Remote Sensing,2002,23(15):3057-3078.
  • 7Baatz M,Schape A.Multi-resolution segmentation:An optimization approach for high quality multi-scale image segmentation[C].// Strobl J (Eds.).Angewandte Geographische Informationsverarbeitung XII,Herbert Wichmann Verlag,2000,12-23.
  • 8北京天目创新科技有限公司.Defines Developer 7.0向导手册[R].北京天目创新科技有限公司,2007,21-121.
  • 9Fung T,Ledrew E.Application of principal components analysis to change detection [J].Photogrammetric Engineering and Remote Sensing,1987,53(12):1649-1658.
  • 10Lambin E F,Strahlers A H.Change-vector analysis:A tool to detect and categorize land-cover change processes using high temporal-resolution satellite data [J].Remote Sensing of Environment,1994(48):231-244.

共引文献26

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部