摘要
为提高学习者的在线学习效率,针对学习者在线学习时的异常学习行为,提出一种包括学习端、教学端和后台管理端的在线学习监督辅助系统,通过人脸活体检测模块、页面检测模块、应用程序识别模块、流量检测模块等进行学习者异常学习行为检测,并提出学习信用度概念,通过学习信用度自适应控制检测频率,节约网络资源。该系统对线上课程不管是理论课还是实际操作课均能进行有效监督。
In order to improve the efficiency of online learning,this paper proposes an online learning supervision assistance system based on the abnormal learning behavior of learners,which includes learning terminal,teaching terminal and back-stage management terminal,and the abnormal learning behavior of learners is detected by face detection module,page detection module,application program recognition module and data flow detection module.It proposes the concept of learning credit,and the detection frequency is adaptively controlled by learning credit to save network resources.The system can effectively supervise online courses,both theoretical courses and practical courses.
作者
陈智文
黄智伟
CHEN Zhi-wen;HUANG Zhi-wei(Wuhan Railway Vocational College of Technology,Wuhan 430205 China)
出处
《科技创新与生产力》
2022年第8期129-132,共4页
Sci-tech Innovation and Productivity
基金
武汉铁路职业技术学院校级课题(Y2020104)。
关键词
在线学习
异常学习行为
学习信用度
学习监督
online learning
abnormal learning behavior
learning credit
learning supervision