期刊文献+

Tensor Train Random Projection

下载PDF
导出
摘要 This work proposes a Tensor Train Random Projection(TTRP)method for dimension reduction,where pairwise distances can be approximately preserved.Our TTRP is systematically constructed through a Tensor Train(TT)representation with TT-ranks equal to one.Based on the tensor train format,this random projection method can speed up the dimension reduction procedure for high-dimensional datasets and requires fewer storage costs with little loss in accuracy,comparedwith existingmethods.We provide a theoretical analysis of the bias and the variance of TTRP,which shows that this approach is an expected isometric projectionwith bounded variance,and we show that the scaling Rademacher variable is an optimal choice for generating the corresponding TT-cores.Detailed numerical experiments with synthetic datasets and theMNIST dataset are conducted to demonstrate the efficiency of TTRP.
出处 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第2期1195-1218,共24页 工程与科学中的计算机建模(英文)
基金 supported by the NationalNatural Science Foundation of China(No.12071291) the Science and Technology Commission of Shanghai Municipality(No.20JC1414300) the Natural Science Foundation of Shanghai(No.20ZR1436200).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部