期刊文献+

面向大规模时态图的紧密子图维护算法 被引量:1

Cohesive subgraph maintenance algorithms for large-scale temporal graphs
下载PDF
导出
摘要 大规模图数据中的重要顶点与层级结构对于挖掘复杂网络(如社交网络、交通网络等)中有价值的信息具有重要意义.提出一种自顶向下的大规模时态图(k,h)-维护算法,对时态图中紧密度最高的前n层(k,h)-核,或满足自定义k,h值约束条件的核进行维护.首先提出识别(k,h)-最大层的方法 .当时态图中出现新的边时,为了定位当前时刻可能因新加入边导致核值需要更新的顶点的范围,提出候选插入子图与部分(k,h)-核的概念及相应的识别算法.针对加边情况,提出自顶向下的时态图(k,h)-核维护加边算法,根据部分(k,h)-核识别核值受加边影响的顶点并对其核值进行更新.针对当前时刻有已经存在的边被删除的情况,提出自顶向下的时态图(k,h)-核维护删边算法,对上一时刻的(k,h)-核做最小调整以得到当前时刻的核值.从理论上证明了算法的正确性,还在真实的时态图上设计了一系列对比实验.实验结果表明,在维护层数较少时下添加边,提出的核维护算法与其他对比算法相比,加速比可达几十倍;删边时,加速比也在1~2倍.提出的算法有良好的扩展性,对于增删不同数量的边和不同的(k,h)设置,都能保持较高的效率. The important vertices and hierarchies in large-scale graph are of great significance for mining valuable information in complex networks(e.g.,social networks,traffic networks). In this paper,we propose a top-down(k,h)-core maintenance approach which can maintain only the top-n layers of the densest(k,h)-cores or the(k,h)-cores satisfying certain constraints.Firstly,we propose a method to identify the densest layer so as to locate the influenced scope of inserted edges. We also propose the concepts of candidate graph and partial(k,h)-core and provide their corresponding detection methods. With the help of partial(k,h)-core,our insertion algorithm can find the minimum incremental graph for each influenced(k,h)-core. For the removal case,our removal algorithm makes the minimum adjustment on previous(k,h)-cores to obtain current(k,h)-cores. We also theoretically prove the correctness of our algorithms. To verify the effectiveness of our methods,we conduct extensive experiments on several real temporal graphs. Experimental results show that our top-down(k,h)-core maintenance algorithms can accelerate dozens of times when adding edges and the number of maintenance layers is small. When deleting edges,the speedup ratio can reach 1 to 2 times. Our algorithm is flexible under various(k,h) settings,and maintains high efficiency for adding and deleting different numbers of edges.
作者 车鑫恺 陈雅迪 胡淼 吴迪 Che Xinkai;Chen Yadi;Hu Miao;Wu Di(School of Computer Science and Engineering,Sun Yat-sen University,Guangzhou,510006,China;Guangdong Key Laboratory of Big Data Analysis and Processing,Guangzhou,510006,China)
出处 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2022年第3期398-412,共15页 Journal of Nanjing University(Natural Science)
基金 国家自然科学基金(U1911201,U2001209) 广州市重点研发计划(202103010004)。
关键词 大规模图 核值维护 紧密子图 时态图 large-scale graph core maintenance cohesive subgraph temporal graph
  • 相关文献

参考文献2

二级参考文献30

  • 1Domingos P, Richardson M. Mining the network value of customers//Proceedings of the 7th ACM SIGKDD Interna- tional Conference on Knowledge Discovery and Data Mining. San Francisco, USA, 2001: 57-66.
  • 2Richardson M, Domingos P. Mining knowledge-sharing sites for viral marketing//Proeeedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Edmonton, Canada, 2002:61-70.
  • 3Kempe D, Kleinberg J, Tardos L. Maximizing the spread of influence through a social network//Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington DC, USA, 2003: 137-146.
  • 4Leskovec J, Krause A, Guestrin C, et al. Cost-effective out- break detection in networks//Proeeedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Jose, USA, 2007:420-429.
  • 5Chen Wei, Wang Ya-Jun, Yang Si-Yu. Efficient influence maximization in social networks//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Paris, France, 2009: 199-207.
  • 6Estavez Pablo A, Vera P, Saito K. Selecting the most influential nodes in social networks//Proceedings of the 2007 International Joint Conference on Neural Networks. Orlando, USA, 2007:2397-2402.
  • 7Chen Wei, Wang Chi, Wang Ya-Jun. Scalable influence maximization for prevalent viral marketing in large-scale social networks//Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington DC, USA, 2010:1029-1038.
  • 8Chen Wei, Yuan Yi-Fei, Zhang Li. Scalable influence maxi- mization in social networks under the linear threshold model //Proceedings of the 10th IEEE International Conference on Data Mining. Sydney, Australia, 2010:88-97.
  • 9Chen Wei, Collins A, Cummings R, et al. Influence maximi- zation in social networks when negative opinions may emerge and propagate//Proceedings of the llth SIAM International Conference on Data Mining. Mesa, USA, 2011:379 -390.
  • 10Narayanam R, Narahari Y. A shapley value-based approach to discover influential nodes in social networks. IEEE Transactions on Automation Science and Engineering, 2010, 8(1): 130- 147.

共引文献58

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部