摘要
跨模态行人再识别是对同一行人的可见光图像和红外图像之间进行匹配和识别,相对于单模态行人再识别的难度进一步加大。本文采用循环生成对抗网络(Cycle GAN)转换和扩充数据集,尽可能减少行人体态变化带来的影响;在ResNet50网络的基础上引入全局特征对比模块和局部特征模块,减少图像噪声和行人遮挡带来的影响;将交叉熵损失和改进的三元组损失以比例加和的形式作为多损失联合函数,对网络监督训练。实验结果表明,该方法的平均精确度均值和前十位命中率都达到了较高的水平,优于当前多数方法。
Cross-modal pedestrians re-identification is to match and identify the visible light image and infrared image of the same pedestrian, which is more difficult than single-modal pedestrian re-identification. In this paper, Cycle GAN is used to transform and expand the dataset to minimize the impact of pedestrian posture changes. Based on the ResNet50 network, a global feature comparison module and a local feature module are introduced to reduce images noise and the impact of pedestrians occlusion. The cross-entropy loss and the improved triplet loss in the form of proportional summation are used as a multi-loss joint function to supervise the training of the network. The experimental results show that the average precision and the top ten hit rate of the proposed method have reached a high level, which is better than most of the current methods.
作者
袁瑞超
胡晓光
杨世欣
YUAN Ruichao;HU Xiaoguang;YANG Shixin(School of Information and Cyber Security,People′s Public Security University of China,Beijing 102600,China;School of Investigation,People′s Public Security University of China,Beijing 102623,China)
出处
《智能计算机与应用》
2022年第9期17-26,共10页
Intelligent Computer and Applications
基金
上海市现场物证重点实验室开放课题基金(2020XCWZK05)
中国人民公安大学新型犯罪研究专项(2021XXFZ010)
中国人民公安大学公共安全行为科学实验室开放课题(2021SYS03)
中国人民公安大学2021年度拔尖创新人才培养项目(2021yjsky013)。
关键词
跨模态行人再识别
循环生成对抗网络
全局特征对比模块
多损失联合函数
cross-modal pedestrians re-identification
cycle-consistent adversarial networks
global feature comparison module
multi-loss joint function