期刊文献+

Numerical Assessment of Nanofluid Natural Convection Using Local RBF Method Coupled with an Artificial Compressibility Model 被引量:1

下载PDF
导出
摘要 In this paper,natural heat convection inside square and equilateral triangular cavities was studied using a meshless method based on collocation local radial basis function(RBF).The nanofluids used were Cu-water or Al_(2)O_(3)-water mixture with nanoparticle volume fractions range of 0≤φ≤0.2.A system of continuity,momentum,and energy partial differential equations was used in modeling the flow and temperature behavior of the fluids.Partial derivatives in the governing equations were approximated using the RBF method.The artificial compressibility model was implemented to overcome the pressure velocity coupling problem that occurs in such equations.Themain goal of this work was to present a simple and efficient method to deal with complex geometries for a variety of problem conditions.To assess the accuracy of the proposed method,several test cases of natural convection in square and triangular cavities were selected.For Rayleigh numbers ranging from 103 to 105,a validation test of natural convection of Cu-water in a square cavity was used.The numerical investigation was then extended to Rayleigh number 106,as well as Al_(2)O_(3)-water nanofluid with a volume fraction range of 0≤φ≤0.2.In a second investigation,the same nanofluids were used in a triangular cavitywith varying volume fractions to test the proposed meshless approach on non-rectangular geometries.The numerical results appear to be in agreement with those from earlier investigations.Furthermore,the suggested meshless method was found to be stable and accurate,demonstrating that it may be a viable alternative for solving natural heat transfer equations of nanofluids in enclosures with irregular geometries.
出处 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第4期133-154,共22页 工程与科学中的计算机建模(英文)
基金 supported through the Annual Funding Track by the Deanship of Scientific Research,Vice Presidency for Graduate Studies and Scientific Research,King Faisal University,Saudi Arabia[Project No.AN000675].
  • 相关文献

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部