摘要
本文介绍校正协变量的ROC曲线的原理、相对优势、应用场景及R软件实现方法。相较于传统的单变量ROC曲线,校正协变量的ROC曲线具有明显的方法学优势和更广阔的应用场景,能帮助更科学地评价标志物预测分类结局指标的能力,应在实践研究中推广应用。
This paper introduced the fundamental theory,method advantages,application scenario and R software implementation method of the covariate-adjusted receiver operating characteristic(ROC)curve.Compared with the traditional univariate ROC curve,the covariate-adjusted ROC curve has distinct methodological advantages and wider application scenarios,which can help to evaluate the ability of markers to predict the targeted outcome more scientifically.It merits more widespread and prior adoption in practical research.
作者
吴家玮
刘嘉浩
陈琪
秦宇辰
WU Jiawei;LIU Jiahao;CHEN Qi;QIN Yuchen(Basic Medical College,Naval Medical University,Shanghai 200433,P.R.China;Naval Healthcare Information Center,Naval Medical University,Shanghai 200433,P.R.China;Department of Health Statistics,Naval Medical University,Shanghai 200433,P.R.China)
出处
《中国循证医学杂志》
CSCD
北大核心
2022年第9期1085-1089,共5页
Chinese Journal of Evidence-based Medicine
基金
“十三五”军队重点学科专业建设项目(编号:03)
2020年上海市“科技创新行动计划”扬帆计划项目(编号:20YF1457900)
上海市公共卫生体系建设三年行动计划学科建设项目(编号:GWV-10.1-XK05)
上海市自然科学基金项目(编号:19ZR1469800)
2021年上海市产业协同创新项目(编号:2021-cyxt1-kj10)
卫生勤务学系教改课题(编号:2022WJB03)。
关键词
ROC曲线
校正协变量的ROC曲线
标志物
预测
曲线下面积
Receiver operating characteristic curve
Covariate-adjusted ROC curve
Marker
Prediction
Area under curve