摘要
SiamRPN算法采用Ln范数损失训练边界框预测,未考虑预测框与真值框间交并比(inersection over union,IoU)的关系,导致准确性不足。针对该问题,提出一种结合IoU损失的SiamRPN目标跟踪改进算法。设计了IoU-smooth L1范数联合优化模块,对候选正样本进行IoU损失与smooth L1范数损失的联合优化;依据回归预测结果,用预测框与真值框的IoU作为权重对正样本进行加权分类预测,增加正样本间的区分度,同时确保分类预测与回归预测的关联性。对比实验结果表明:本文所提改进算法能有效提升跟踪性能。
To improve the accuracy of the object bounding box regression prediction of the SiamRPN,solve the problem of low discrimination of positive samples in classification prediction and the lack of correlation between regression prediction and classification prediction,an improved object tracking algorithm of SiamRPN which combined with IoU(intersection over union)loss is proposed.A joint optimization module of IoU-smooth L1 is designed to optimize the IoU loss of the best positive sample and the smooth L1 loss of other positive samples jointly.According to the regression prediction results,the weighted classification prediction is performed on the positive samples with the weight calculated by the IoU of the prediction box and the truth box,so as to increase the discrimination between the positive samples,while ensuring the correlation between the classification prediction and the regression prediction.The results show that the proposed algorithm can effectively improve the tracking performance.
作者
周维
刘宇翔
廖广平
马鑫
Wei Zhou;Yuxiang Liu;Guangping Liao;Xin Ma(Xiangtan University,School of Computer Science&School of Cyberspace Science,Xiangtan 411105,China)
出处
《系统仿真学报》
CAS
CSCD
北大核心
2022年第9期1956-1967,共12页
Journal of System Simulation
基金
湖南省科技计划(2016TP1020)
衡阳师范学院智能信息处理与应用湖南省重点实验室开放基金(IIPA20K04)。
关键词
机器视觉
目标跟踪
孪生网络
锚点框
交并比损失
machine vision
object tracking
siamese network
anchor boxes
inersection over union loss