期刊文献+

一类带收获和毒素项种群竞争模型的扩散性质 被引量:1

A Diffusivel Behavior of a Competitive Model with Gain Items and Toxin
下载PDF
导出
摘要 借助于常微分方程定性与稳定性理论,研究一类带毒素和收获项的竞争模型的扩散性质。当模型满足一定的条件时,模型的正平衡点是局部渐近稳定的,并给出正平衡点的某一邻域内有一个小振幅周期解的充分条件,最后利用数值仿真验证定理的准确性。 A diffusivel behavior of a competitive model with gain items and toxin is studied using qualitative and stability theory of Differential Equation in this passage.The positive equilibrium of the system is gradually stable when certain conditions are satisfied in the model.Then the sufficient conditions that a spatial periodic solution of small amplitude produced in the neighborhood of a positive equilibrium are found.The results show that the model is more accurate than that without modifying factor.
作者 武海辉 WU Haihui(Department of Mathematics and Statistics,Ankang University,Ankang 725000,China;Institute of Mathematics and Applied Mathematics,Ankang University,Ankang 725000,China)
出处 《甘肃科学学报》 2022年第5期1-4,共4页 Journal of Gansu Sciences
基金 国家自然科学基金(61801005) 陕西省自然科学基础研究计划资助项目(2019JM-444)。
关键词 竞争 扩散率 毒素 收获项 HOPF分支 Competition Diffusive rate Toxin Gain items Hopf-bifurcation
  • 相关文献

参考文献6

二级参考文献32

  • 1包群,彭水军.经济增长与环境污染:基于面板数据的联立方程估计[J].世界经济,2006,29(11):48-58. 被引量:311
  • 2HOLLING C S. The functional response of predator to prey density and its role in mimicry and population regulation[J]. Men Ent Soc Can,45 : 1-60.
  • 3LI Yong-kun. Periodic solutions of n-species competion system with time delays [ J ]. Biomath, 1997,12 ( 1 ) : 1- 18.
  • 4ZHANG Zheng-qiu, WANG Zhi-cheng. perriodic solutions for nonautonomous predator-prey system with diffusion and time delay[J]. Hiroshima Math,2001,31:371-381.
  • 5SKELLEM J D,RANDOM.Dispersal in theoretical population[J].Biometrika,1951,38:196-216.
  • 6LEVINSA.Dispersal and population interactions[J].Amer Natur,1974,108:207-228.
  • 7ZHANG Xing-an,CHEN Lan-sun.The Linear and nonlinear diffusion of the competitive Lotka-volterra model[J].Nonlinear Analysis,2007,65:2767-2776.
  • 8TAKEUCHI Y.Permanence and global stability for competitive Lotka-volterra diffusion systems[J].Nonlinear Analysis,1995,24:91-104.
  • 9EDELSTEN-KESHET L.Mathmatical Model in Biology[M].New York:Bendom House,1988.
  • 10张兴安,华中师范大学学报,1996年,30卷,1期,10页

共引文献20

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部