摘要
主要运用同余、递归序列、Pell方程解的性质等一些初等方法,对不定方程组x^(2)-90y^(2)=1与y^(2)-Dz^(2)=4的整数解进行了研究。证明了:若p,…, p是不同的奇素数,则当D=2p…p(1≤s≤4)时,除开D为2×7×103外,不定方程组x^(2)-90y^(2)=1与y^(2)-Dz^(2)=4仅有平凡解(x,y,z)=(±19,±2,0)。
In this paper, with such elementary methods as congruence, recursive sequence and some properties of the solution to Pell equation, the integer solutions on the Diophantine equations x^(2)-90y^(2)=1 and y^(2)-Dz^(2)=4 is studied, and the result shows that: If p,…,pare diverse odd primes,D =2p…p( 1≤s ≤4), then the equations x^(2)-90y^(2) =1 and y^(2)-Dz^(2)=4 have only trivial solutions(x,y,z)=(±19,±2,0), with the exception that D =2×7×103.
作者
管训贵
蒋玉婷
GUAN Xun-gui;JIANG Yu-ting(School of Mathematics and Physics,Taizhou University,Taizhou Jiangsu 225300,China)
出处
《萍乡学院学报》
2022年第3期5-10,共6页
Journal of Pingxiang University
基金
江苏省自然科学基金(BK20171318)
泰州学院大学生实践训练项目(2021CXXL010)。
关键词
不定方程
递归序列
公解
Diophantine equation
recursive sequence
common solution