期刊文献+

中国区域能源效率关键影响因素分析--基于GML指数和BMA方法的实证研究 被引量:6

The Key Factors Affecting Regional Energy Efficiency in China--Empirical Study Based on Global Malmquist-Luenberger and Bayesian Model Averaging Method
原文传递
导出
摘要 首先运用GML指数法测度中国30个省市^(①)2006-2017年全要素能源效率的变化,然后应用BMA方法,识别全国层面和东、中、西部地区层面能源效率提升的关键影响因素。结果表明:12年间全国及各地区能源效率呈波动上升趋势,平均来看,西部地区有所提升,东、中部地区略有下降;全国层面能源效率的关键影响因素依次为金融发展、国际贸易、产权结构、能源技术水平、劳动者素质和固定资产投资,除金融发展、产权结构、能源技术水平对各地区的影响方向一致外,其余因素对各地区的影响方向并不完全相同,各地区的关键影响因素也存在差异。最后,为全国和地区层面提升能源效率提出了政策建议。 Firstly, this paper measure the growth of the total factor energy efficiency of 30 province-level regions in China from 2006 to 2017 by the Global Malmquist-Luenberger productivity index. And then it identifies the key factors affecting energy efficiency at the national and regional level respectively by Bayesian Model Averaging method. Results show that, the energy efficiency of the whole country and three regions have been fluctuating upward in the past 12 years. On average, the energy efficiency in the western region increases, while that in the eastern and central regions decreases slightly. The key factors affecting energy efficiency at the national level include financial development, foreign trade, ownership structure, energy technical level, labors quality and fixed asset investment. In these factors, financial development, ownership structure and energy technical level have the same influence directions on the three regions, while the other factors have different influence directions on each region, the key factors affecting energy efficiency of each region are different as well. Finally, it provides policy recommendations for improving energy efficiency at the national and regional levels.
作者 谷晓梅 范德成 杜明月 GU Xiao-mei;FAN De-cheng;DU Ming-yue(School of Economics and Management,Harbin Engineering Unirersity,Harbin 150001)
出处 《软科学》 CSSCI 北大核心 2022年第9期81-88,共8页 Soft Science
基金 国家社会科学基金重点项目(19AGL007) 黑龙江省哲学社会科学研究规划项目(18GLD291) 中央高校基本科研业务费项目(3072021CFJ0904)。
关键词 能源效率 关键影响因素 贝叶斯模型平均 GML指数法 energy efficiency key influencing factors Bayesian Model Averaging Global Malmquist-Luenberger
  • 相关文献

参考文献11

二级参考文献167

共引文献2811

同被引文献128

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部