期刊文献+

轻量网络MHNet对新冠肺炎的识别研究

Study on the Identification of COVID-19 by Light Weight Network MHNet
下载PDF
导出
摘要 为了能够快速准确地诊断出新冠肺炎患者,文章参考MobileNetV2架构并结合注意力网络,改进损失优化函数,依据CNN网络设计准则搭建新型轻量网络MHNet。在COVIDx CXR-2公开数据集上进行的实验表明,该网络在准确率、召回率、特异性、精准率、F1分数、模型大小、CPU单张图推理耗时、GPU单张图推理耗时上的指标分别为92%、99%、85%、86.84%、92.52%、3.91 MB、59.51 ms、17.66 ms。相较于其他传统网络,该网络对新冠肺炎感染者的诊断率较高、诊断效果较好。 In order to diagnose COVID-19 patients more accurately and quickly,this paper refers to MobileNetV2 architecture and combines attention network,improves loss optimization function,and builds a new lightweight network MHNet according to CNN network design criteria.Experiments on a public COVIDx CXR-2 dataset show that the indicators of the network in accuracy,recall,specificity,accuracy,F1 score,model size,CPU single graph reasoning time,GPU single graph reasoning time are 92%,99%,85%,86.84%,92.52%,3.91 MB,59.51 ms,17.66 ms respectively.Compared with other traditional networks,this network has higher diagnostic rate and better diagnostic effect for patients infected with covid-19 infection.
作者 侯麟朔 王寅 龙启航 李宇翔 马淑康 HOU Linshuo;WANG Yin;LONG Qihang;LI Yuxiang;MA Shukang(College of Mechatronics and Information Engineering,China University of Mining and Technology-Beijing,Beijing 100083,China)
出处 《现代信息科技》 2022年第13期82-85,89,共5页 Modern Information Technology
关键词 新冠肺炎 ECA-Net FocalLoss 高效CNN网络设计准则 COVID-19 ECA-Net FocalLoss Guidelines for efficient CNN network design
  • 相关文献

参考文献4

二级参考文献13

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部