摘要
针对高速公路路段长,无法密集布置用于检测车祸、车流量的传感器这一问题,文章设计一种可用于在高速公路上监测交通情况的无人机,同时设计一种车流量预测算法,可以较为准确地预测某一路段一定时间内的车流量。无人机搭载摄像头并通过图传系统将高速公路的实时运行情况传回地面站,采用YOLOv3算法计算视野内的车辆数目,使用改进后的灰色预测算法预测之后到来的车辆数目。实验结果表明,该无人机可以实时采集并预测公路环境,具有良好的可行性和实用性。
Aiming at the problem that the highway section is long and cannot be densely arranged with sensors for detecting traffic accidents and traffic flow,this paper designs a UAV that can be used to monitor traffic conditions on the highway,and designs a traffic flow prediction algorithm,which can accurately predict the traffic flow of a certain section in a certain period of time.The UAV is equipped with a camera and sends the real-time operation of the highway back to the ground station through the image transmission system.The number of vehicles in the field of vision is calculated by using the YOLOv3 algorithm,and the number of vehicles coming later is predicted by using the improved gray prediction algorithm.The experimental results show that the UAV can collect and predict the road environment in real time,and has good feasibility and practicability.
作者
张学峰
郁洋
任彬
ZHANG Xuefeng;YU Yang;REN Bin(School of Mechanical Engineering,Shijiazhuang Tiedao University,Shijiazhuang 050043,China)
出处
《现代信息科技》
2022年第13期101-105,共5页
Modern Information Technology
基金
河北省省属高等学校基本科研业务费研究项目(50199990400)
省级大学生创新创业训练计划(S202010107059)
河北省大中学生科技创新能力培育专项项目(22E50109D)。