期刊文献+

Vacancy defect engineering in semiconductors for solar light‐driven environmental remediation and sustainable energy production 被引量:3

原文传递
导出
摘要 The introduction of vacancy defects in semiconductors has been proven to be a highly effective approach to improve their photocatalytic activity owing to their advantages of promoting light absorption,facilitating photogenerated carrier separation,optimizing electronic structure,and enabling the production of reactive radicals.Herein,we outline the state-of-the-art vacancy-engineered photocatalysts in various applications and reveal how the vacancies influence photocatalytic performance.Specifically,the types of vacancy defects,the methods for tailoring vacancies,the advanced characteri-zation techniques,the categories of photocatalysts with vacancy defects,and the corresponding photocatalytic behaviors are presented.Meanwhile,the methods of vacancies creation and the related photocatalytic performance are correlated,which can be very useful to guide the readers to quickly obtain in-depth knowledge and to have a good idea about the selection of defect engineering methods.The precise characterization of vacancy defects is highly challenging.This review describes the accurate use of a series of characterization techniques with detailed comments and suggestions.This represents the uniqueness of this comprehensive review.The challenges and development prospects in engineering photocatalysts with vacancy defects for practical applications are discussed to provide a promising research direction in this field.
出处 《Interdisciplinary Materials》 2022年第2期213-255,共43页 交叉学科材料(英文)
基金 This study was also supported by the European Commission Interreg V France-Wallonie-Vlaanderen project“DepollutAir.”Yang Ding is grateful for the financial support of the China Scholarship Council(201808310127) This study was financially supported by the National Natural Science Foundation of China(U20A20122) the Program for Changjiang Scholars and Innovative Research Team in University(IRT_15R52)of the Chinese Ministry of Education,the Program of Introducing Talents of Discipline to Universities-Plan 111(Grant No.B20002) the Ministry of Science and Technology and the Ministry of Education of China,and the National Key R&D Program of China(2016YFA0202602).
  • 相关文献

参考文献12

二级参考文献25

共引文献102

同被引文献25

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部