期刊文献+

基于Retinex理论的全卷积网络低光图像增强方法 被引量:1

Low Light Image Enhancement Method for Full Convolutional Network Based on Retinex Theory
下载PDF
导出
摘要 为解决低光图像的亮度低、对比度弱等一系列降质问题,文章提出一种全新的网络架构用于低光图像增强。整个网络包含分解、去噪、和增强三个子网络,分解网络将图像分解成光照图和反射图,去噪网络在频域上对反射图进行去噪,增强网络通过多次卷积操作对光照图进行增强,最后将去噪后的反射图和增强后的光照图逐像素相乘得到结果图。实验证明,文章提出的方法可以有效地提升亮度和对比度、去除噪声,在主客观评价指标上有明显优势。 In order to solve a series of degradation problems such as low brightness and weak contrast of low light images,this paper proposes a new network architecture to enhance the low light images.The whole network includes three sub networks:decomposition,denoising and enhancement.The decomposition network decomposes the image into illumination image and reflection image.The denoising network denoises the reflection image in the frequency domain.The enhancement network enhances the illumination map through several convolution operations.Finally,the denoised reflection image and the enhanced illumination image are multiplied pixel by pixel to obtain the result image.Experiments show that the proposed method in this paper can effectively improve the brightness and contrast,remove noise and it has obvious advantages in subjective and objective evaluation indexes.
作者 余雅琪 杨梦龙 YU Yaqi;YANG Menglong(School of Aeronautics and Astronautics,Sichuan University,Chengdu 610065,China)
出处 《现代信息科技》 2022年第17期1-7,共7页 Modern Information Technology
关键词 RETINEX 全卷积网络 低光图像增强 损失函数 傅里叶变换 Retinex full convolution network low light image enhancement loss function Fourier transform
  • 相关文献

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部