期刊文献+

双信道WDM光纤无线集成太赫兹传输系统 被引量:1

Two Channel WDM Wireless and Optical Integration THz Transmission System
下载PDF
导出
摘要 为了进一步提升当前主流太赫兹系统的通信容量,本文基于光子辅助太赫兹生成技术、波分复用(Wavelength Division Multiplexing,WDM)、多输入多输出技术(Multiple-Input Multiple-Output,MIMO)以及先进的数字信号处理,提出一种N×N MIMO光纤-无线-光纤融合太赫兹传输系统模型,搭建双信道WDM的2×2 MIMO实验系统,并成功实现两路3 Gbaud四频相移键控(Quad-frequency Phase Shift Keying,QPSK)信号先后在10 km单模光纤(SMF-28)、3.8 m无线链路、2.2 km SMF-28上的传输,且误码率低于硬判决前向纠错(Hard-Decision Forward Error Correction,HD-FEC)的阈值3.8×10^(-3). In order to further improve the communication capacity of the current mainstream terahertz system,based on photon-assisted terahertz generation technology,wavelength division multiplexing(WDM),multiple input multiple output technology(MIMO)and advanced digital signal processing,a model of N×N MIMO fiber-wireless-fiber fusion terahertz transmission system is proposed.We built a dual-channel WDM 2×2 MIMO experimental system,and successfully implemented two 3 Gbaud quad-frequency phase shift keying(QPSK)signal transmission over 10 km single-mode fiber(SMF-28),3.8 m wireless link,2.2 km SMF-28.The measured system error rate is lower than the hard-decision forward error correction(HD-FEC)threshold of 3.8×10^(-3).
作者 李韦萍 王凯辉 桑博涵 余建军 LI Wei-ping;WANG Kai-hui;SANG Bo-han;YU Jian-jun(Key Laboratory for Information Science of Electromagnetic Waves(MoE),Department of Communication Science and Engineering,Fudan University,Shanghai 200433,China;Shanghai Institute for Advanced Communication and Data Science,Fudan University,Shanghai 200433,China)
出处 《电子学报》 EI CAS CSCD 北大核心 2022年第10期2311-2317,共7页 Acta Electronica Sinica
基金 国家自然科学基金(No.61935005,No.61922025,No.61527801,No.61675048,No.61720106015,No.61835002,No.61805043) 国家重点研发计划(No.2018YFB1800900)。
关键词 太赫兹 波分复用 多输入多输出技术 光子辅助 terahertz wavelength division multiplexing multiple-input multiple-output technique photonics-aid
  • 相关文献

参考文献4

二级参考文献22

  • 1陈殿玉,孙伟明,秦世才,熊绍珍.现代光通讯中的全集成CMOS限幅器及场强指示电路[J].光电子.激光,2007,18(2):167-170. 被引量:8
  • 2M. Tonouchi, Nat. Photon. 1, 97 (2007).
  • 3R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, Nature 417, 156 (2002).
  • 4S. Kumar, IEEE J. Sel. Top. Quantum Electron. 17, 38 (2011).
  • 5J. C. Cao, H. Li, Y. J. Han, Z. Y. Tan, J. T. Lii, H. Luo, S. Laframboise, and H. C. Liu, Chin. Phys. Lett. 25, 953 (2008).
  • 6S. Barbieri, W. Maineult, S. S. Dhillon, C. Sirtori, J. Alton, N. Breuil, H. E. Beere, and D. A. Ritchie, Appl. Phys. Lett. 91, 143510 (2007).
  • 7P. Gellie, S. Barbieri, J. F. Lampin, P. Filloux, C. Man- quest, C. Sirtori, I. Sagnes, S. P. Khanna, E. H. Linfield, A. G. Davies, H. Beere, and D. Ritchie, Opt. Express 18, 20799 (2010).
  • 8R. Martini and E. A. Whittaker, J. Opt. Fiber Commun. Rep. 2, 279 (2005).
  • 9H. C. Liu, G. E. Jenkins, E. R. Brown, K. A. Mcintosh, K. B. Nichols and M. J. Manfra, IEEE Electron. Dev. Lett. 16, 253 (1995).
  • 10P. D. Grant, S. R. Laframboise, R. Dudek, M. Graf, A. Bezinger, and H. C. Liu, Electron. Lett. 45, 952 (2009).

共引文献34

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部