摘要
针对电价非平稳性强的问题,为提高电价的预测精度,提出一种基于变分模态分解(VMD)、经验模式分解(EMD)和长短时记忆网络(LSTM)的混合预测模型。首先利用VMD将电价分解为若干子序列和残差项;针对残差项具有较强非平稳性的问题,利用EMD对残差项进一步分解;最后对各子序列分别利用LSTM模型进行预测,并将各子序列预测结果叠加得到最终预测电价。实验结果表明,该方法相比于其他对比方法具有更高的预测精度。
Aiming at the problem of strong un-stationarity of electricity price,in order to improve the forecast accuracy of electricity price,a hybrid forecast model based on Variational Mode Decomposition (VMD),Empirical Mode Decomposition (EMD) and Long Short-Term Memory Network (LSTM) is proposed.Firstly,it uses VMD to decompose the electricity price into several sub-sequences and residual terms.Then,for the problem that the residual terms have strong un-stationarity,it uses EMD to further decompose the residual terms.Finally,it uses LSTM model to forecast each sub-sequence respectively,and superimposes the forecast results of each subsequence to obtain the final forecast electricity price.The experimental results show that this method has higher forecast accuracy than other contrasting methods.
作者
翟广松
王鹏
谢智锋
吴镇波
ZHAI Guangsong;WANG Peng;XIE Zhifeng;WU Zhenbo(School of Automation,Guangdong University of Technology,Guangzhou 510006,China)
出处
《现代信息科技》
2022年第18期84-88,共5页
Modern Information Technology
关键词
电价预测
变分模态分解
经验模式分解
长短时记忆网络
electricity price forecast
Variational Mode Decomposition
Empirical Mode Decomposition
Long Short-Term Memory Network