期刊文献+

Piecewise Spectral Collocation Method for Second Order Volterra Integro-Differential Equations with Nonvanishing Delay 被引量:1

原文传递
导出
摘要 In this paper,the piecewise spectral-collocation method is used to solve the second-order Volterra integral differential equation with nonvanishing delay.In this collocation method,the main discontinuity point of the solution of the equation is used to divide the partitions to overcome the disturbance of the numerical error convergence caused by the main discontinuity of the solution of the equation.Derivative approximation in the sense of integral is constructed in numerical format,and the convergence of the spectral collocation method in the sense of the L¥and L2 norm is proved by the Dirichlet formula.At the same time,the error convergence also meets the effect of spectral accuracy convergence.The numerical experimental results are given at the end also verify the correctness of the theoretically proven results.
出处 《Advances in Applied Mathematics and Mechanics》 SCIE 2022年第6期1333-1356,共24页 应用数学与力学进展(英文)
基金 the State Key Program of National Natural Science Foundation of China(No.11931003) National Natural Science Foundation of China(Nos.41974133,and 12126325) Postgraduate Scientific Research Innovation Project of Hunan Province(No.CX20200620) Postgraduate Scientific Research Innovation Project of Xiangtan University(No.XDCX2020B087).
  • 相关文献

参考文献7

二级参考文献19

  • 1Cheng-long Xu,Ben-yu Guo.LAGUERRE PSEUDOSPECTRAL METHOD FOR NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS[J].Journal of Computational Mathematics,2002,20(4):413-428. 被引量:13
  • 2H. Brunner, Collocation Methods for Volterra Integral and Related Functional Equations Methods, Cambridge University Press 2004.
  • 3H. Brunner, 3.P. Kauthen, The numerical solution of two-dimensional Volterra Integral Equation, IMA d. Numer. Anal., 9 (1989), 45-59.
  • 4H. Brunner and T. Tang, Polynomial spline collocation methods for the nonlinear Basset equation, Comput. Math. Appl., 18 (1989), 449-457.
  • 5C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral Methods: Fundamentals in Single Domains, Springer-Verlag 2006.
  • 6L.M. Delves, J.L. Mohanmed, Computational Methods for Integral Equations, Cambridge University Press 1985.
  • 7G.N. Elnagar and M. Kazemi, Chebyshev spectral solution of nonlinear Volterra-Hammerstein integral equations, J. Comput. Appl. Math., 76 (1996), 147-158.
  • 8H. Fujiwara, High-accurate numerical method for integral equations of the first kind under multiple-precision arithmetic, Preprint, RIMS, Kyoto University, 2006.
  • 9B. Guo and L. Wang, Jacobi interpolation approximations and their applications to singular differential equations, Adv. Comput. Math., 14 (2001), 227-276.
  • 10B. Guo and L. Wang, Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces, J. Approx. Theory, 128 (2004), 1-41.

共引文献53

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部