摘要
In this paper,the transient Navier-Stokes equations with damping are considered.Firstly,the semi-discrete scheme is discussed and optimal error estimates are derived.Secondly,a linearized backward Euler scheme is proposed.By the error split technique,the Stokes operator and the H^(-1)-norm estimate,unconditional optimal error estimates for the velocity in the norms L^(∞)(L^(2)) and L^(∞)(H^(1)),and the pressure in the norm L^(∞)(L^(2))are deduced.Finally,two numerical examples are provided to confirm the theoretical analysis.
基金
supported by Fundamental Research Funds for the Henan Provincial Colleges and Universities(No.20A110002).