期刊文献+

基于深度学习的混凝土结构表面裂缝检测 被引量:6

Surface crack detection of concrete structures based on deep learning
下载PDF
导出
摘要 混凝土结构裂缝的结构安全问题是目前人们关注的热点,而裂缝是影响建筑物安全的重要因素之一。所以提出了1种基于深度学习的混凝土结构表面裂缝检测方法。首先运用了数据增强的方式丰富了裂缝图像数据集,再利用深度学习技术,选用DeconvNet反卷积网络模型进行模型的训练学习。将图像拼接技术与深度学习相结合应用在混凝土结构裂缝检测中,并且对图像中的裂缝特征进行分析,测量出裂缝的角度、宽度和长度。结果显示,测试集的识别率达到了71.17%,准确率达到了97.92%,使用数据增强增加了模型的泛化能力,使模型具有更好的识别效果,能够对混凝土结构表面裂缝进行完整还原。 The problem of structural safety of concrete structure crack is a hot topic at present,and crack is one of the important factors affecting the safety of buildings.Therefore,it proposes a method of surface crack detection of concrete structure based on deep learning.Firstly,the data enhancement method is used to enrich the crack image data set,and then the DeconvNet deconvolution network model is used to carry out the training and learning of the model.The image splicing technology is combined with deep learning to detect cracks in concrete structures,and the crack characteristics in the image are analyzed to measure the angle,width and length of cracks.The results showed that the recognition rate of the test set reached 71.17%,and the accuracy rate reached 97.92%.The data enhancement increased the generalization ability of the model,so that the model had better recognition effect and could completely restore the surface cracks of the concrete structure.
作者 李彦葓 李鹏飞 吕淼 LI Yanhong;LI Pengfei;Lü Miao(College of Hehai,Chongqing Jiaotong University,Chongqing 400074,China;State Key Laboratory of Hydro Science and Engineering,Tsinghua University,Bejjing 100084,China)
出处 《混凝土》 CAS 北大核心 2022年第8期187-192,共6页 Concrete
基金 重庆市教委科学技术研究项目(KJQN201800741) 珠三角水资源配制工程科技项目(WW2018231,WW2018225)。
关键词 深度学习 图像拼接 DeconvNet网络 数据增强 裂缝特征 deep learning image mosaic DeconvNet network data augmentation crack characteristics
  • 相关文献

参考文献4

二级参考文献83

  • 1HanJ KamberM.数据挖掘概念与技术[M].北京:机械工业出版社,2002..
  • 2KUMAR M, ORLIN JB, PATEL NR. Clustering data with measurement errors[ R]. Technical Report, RRR 12 - 2005, New Jersey:RUTCOR, Rutgers Center for Operations Researeh, 2005.
  • 3SU MC. A modified version for k-means[ J]. IEEE Transactions onPattern Analysis and Machine Intelligence, 2001, 23 (6) : 674 -680.
  • 4FAYYAD U, REINA C, BRADLEY PS. Initialization of interative refinement clustering algorithms[ A]. Proceedings of Fourth International Conference on Knowledge Discovery and Data Mining[ C].Menlo Park: AAAI Press, 1998. 194 - 198.
  • 5CHAUDHURI D, CHAUDHURI BB. A novel muhiseed nonhierarchical data clustering technique[ J]. IEEE Transactions on Systems,Man and Cybernetics: PartB, 1997, 27(5) : 871 - 877.
  • 6KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenet classification with deep convolutional neural networks[C]∥Advances in Neural Information Processing Systems.Red Hook,NY:Curran Associates,2012:1097-1105.
  • 7DAHL G E,YU D,DENG L,et al.Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition[J].Audio,Speech,and Language Processing,IEEE Transactions on,2012,20(1):30-42.
  • 8ZEN H,SENIOR A,SCHUSTER M.Statistical parametric speech synthesis using deep neural networks[C]∥Acoustics,Speech and Signal Processing(ICASSP),20131EEE International Conference on.Piscataway,NJ:IEEE,2013:7962-7966.
  • 9BAHDANAU D,CHO K,BENGIO Y.Neural machine translation by jointly learning to align and translate[J].CoRR,2014:abs/1409.0473.
  • 10ZEILER M D,FERGUS R.Visualizing and understanding convolutional neural networks[J].CoRR,2013:abs/1311.2901.

共引文献501

同被引文献46

引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部