摘要
A passive simulation method based on the six degrees of freedom(6-DOF)model and dynamic mesh is proposed according to the working principle to study the dynamic characteristics of the turbine flow sensors.This simulation method controls the six degrees of freedom of the impeller using the user-defined functions(UDF)program so that it can only rotate under the impact of fluid.The impeller speed can be calculated in real-time,and the inlet speed can be set with time to obtain the dynamic performance of the turbine flow sensors.Based on this simulation method,three turbine flow sensors with different diameters were simulated,and the reliability of the simulation method was verified by both steady-state and unsteady-state experiments.The results show that the trend of meter factor with flow rate acquired from the simulation is close to the experimental results.The deviation between the simulation and experiment results is low,with a maximum deviation of 2.88%.In the unsteady simulation study,the impeller speed changed with the inlet velocity of the turbine flow sensor,showing good tracking performance.The passive simulation method can be used to predict the dynamic performance of the turbine flow sensor.
为了研究涡轮流量传感器的动态特性,根据其工作原理提出了基于六自由度模型和动态网格相结合的被动式仿真方法.该仿真方法通过编写用户自定义功能(UDF)程序来控制叶轮的6个自由度,使其只能在水流的冲击下旋转,实时计算叶轮转速,并可设定随时间变化的进口速度,以获得涡轮流量计的动态性能.基于该仿真方法对3种不同口径的涡轮流量传感器进行了仿真,并通过稳态实验和非稳态实验验证了该仿真方法的可靠性.结果表明,仿真得到的仪表系数随流量的变化趋势与实验结果接近,仿真结果与实验结果的偏差较小,最大偏差为2.88%.在非定常仿真研究中,叶轮转速随涡轮流量传感器入口速度的变化而变化,具有良好的跟随效果.被动式仿真方法可用于预测涡轮流量传感器的动态性能.
基金
The National Natural Science Foundation of China(No.62173122)
the Hebei Key Project of Natural Science Foundation(No.F2021201031)。