期刊文献+

基于孪生网络的目标跟踪算法研究进展 被引量:2

Research Progress of Target Tracking Algorithm Based on Siamese Network
下载PDF
导出
摘要 目标跟踪是计算机视觉领域中最为核心的基础研究问题之一,其能够协同高层视频应用分析和研究,具有重要的理论价值、广泛的实用价值和多学科交叉性,成为学术界、工业界以及国家战略的关注焦点。由于跟踪场景复杂度高、干扰强,目标表观变化多样性以及多模态信息融合等因素,使得跟踪器需要均衡鲁棒性、准确性以及实时性等性能衡量指标。目前,已有很多工作从不同视角解决目标跟踪领域中的挑战,但是在多维度性能指标的衡量下,仍然不能很好地克服复杂场景下的跟踪问题。本文通过基于孪生网络的目标跟踪算法,回顾领域发展现状,探讨存在的挑战,展望未来值得关注的研究方向,为该领域未来的研究工作提供借鉴和参考。 Target tracking is one of the core basic research issues in the field of computer vision.Its performance can cooperate with the analysis and research of high-level video applications,which has important theoretical value,extensive practical value and interdisciplinary.Therefore,it has become the focus of academia,industry and national strategy.Due to the high complexity and strong interference of the tracking scene,the diversity of target apparent changes and multi-modal information fusion,the tracker needs to balance the performance measurement indicators such as robustness,accuracy and real-time.At present,a lot of work has been done to solve the challenges in the field of target tracking from different perspectives,but under the measurement of multi-dimensional performance indicators,it still can not solve the tracking problem in complex scenes.Through the research of target tracking algorithm based on Siamese network,this paper reviews the current development status of the field,discusses the existing challenges and looks forward to the research direction worthy of attention in the future,so as to provide a reference for the future research work in this field.
作者 梁启花 胡现韬 钟必能 于枫 李先贤 LIANG Qihua;HU Xiantao;ZHONG Bineng;YU Feng;LI Xianxian(Guangxi Key Laboratory of Multi-Source Information Mining and Security(Guangxi Normal University),Guilin Guangxi 541004,China;Key Laboratory of Computer Network and Information Integration,Southeast University,Nanjing Jiangsu 211189,China)
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2022年第5期90-103,共14页 Journal of Guangxi Normal University:Natural Science Edition
基金 广西自然科学基金(2022GXNSFDA035079,GuiKeAD21075030,2020GXNSFAA159109) 国家自然科学基金(61972167,62062016) 东南大学计算机网络和信息集成教育部重点实验室开放课题(K93-9-2020-04) 广西高等教育本科教学改革工程项目(2020JGB123) 广西八桂学者创新研究团队项目 广西多源信息集成与智能处理协同创新中心项目 广西大数据智能与应用人才小高地项目。
关键词 计算机视觉 目标跟踪 视频应用与分析 多模态 孪生网络 computer vision target tracking video application and analysis multimodal siamese network
  • 相关文献

参考文献10

二级参考文献185

  • 1程建,周越,蔡念,杨杰.基于粒子滤波的红外目标跟踪[J].红外与毫米波学报,2006,25(2):113-117. 被引量:73
  • 2侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:254
  • 3王永忠,潘泉,赵春晖,程咏梅.一种对光照变化鲁棒的均值漂移跟踪方法[J].电子与信息学报,2007,29(10):2287-2291. 被引量:5
  • 4ELGAMMAL A, DURAISWAMI R,HARWOOD D,et al.. Background and foreground modeling using nonparametric ker- nel density estimation for visual surveillance [ J ]. IEEE,2002,90 ( 7 ) : 1151-1163.
  • 5AVIDAN S. Support vector tracking[ J]. IEEE Trans. Part, Analy. Mach. Intell. ,2004,26(8) : 1064-1072.
  • 6PARK S,AGGARWAL J K. A hierarchical bayesian network for event recognition of human actions and interactions. Mul- timed[J]. Syst. ,2004,10(2):164-179.
  • 7VEENMAN C, REINDERS M, BACKER E. Resolving motion correspondence for densely moving points[ J ]. IEEE Trans. Part. Analy. Mach. Intell. ,2001,23(1) :54-72.
  • 8SHAFIQUE K, SHAH M. A non-iterative greedy algorithm for multi-frame point correspondence [ J ]. IEEE Trans. Part. Analy. Mach. lntell. ,2005,27( 1 ) : 110-115.
  • 9COMANICIU D, RAMESH V, MEER P. Kernel-based object tracking [ J]. IEEE Trans. Part. Analy. Mach. Intell., 2003,25:564-575.
  • 10BLACK M,JEPSON A. Eigentraeking:robust matching and tracking of articulated objects using a view-based representa- tion[J]. Int. J. Comput. Vision,1998,26(1) :63-84.

共引文献612

同被引文献11

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部