期刊文献+

可压缩非守恒两相流模型

Compressible Non-conservative Two-phase Flow Model
下载PDF
导出
摘要 可压缩非守恒两相流模型广泛应用于电力、核能、化学工艺、油气、低温空间、生物医学、微技术等。本文主要介绍流体压强相等且有毛细管效应、压强不相等且无毛细管效应、压强相等且无毛细管效应这3类可压缩非守恒两相流模型及其相关研究成果。特别地,2种流体压强相等且无毛细管效应的高维可压缩非守恒两相流模型的线性系统含零特征根,使得该问题的数学分析变得十分复杂和困难,至今,该模型无任何数学成果,这将是今后工作的重点。 The compressible non-conservative two-phase flow models are widely used in industrial applications,such as nuclear,power,chemical-process,oil-and-gas,cryogenics,bio-medical,micro-technology and so on.This paper makes a review on the study of three types of compressible non-conservative two-phase flow models with equal pressure and capillary effect,unequal pressure without capillary effect,and equal pressure without capillary effect.Then,introduces the research developments of these three types of compressible non-conservative two-phase flow models,respectively.In particular,the linear system of the high-dimensional compressible non-conservative two-phase flow model with equal pressure without capillary effect contains zero eigenvalue,which makes the mathematical analysis of this problem very difficult.The new model has no mathematical results so far,and will be the focus of future work.
作者 张映辉 叶琴 ZHANG Yinghui;YE Qin(School of Mathematics and Statistics,Guangxi Normal University,Guilin Guangxi 541006,China)
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2022年第5期127-137,共11页 Journal of Guangxi Normal University:Natural Science Edition
基金 国家自然科学基金(11771150,11571280) 广西自然科学基金(2019JJG110003,2019AC20214)。
关键词 可压缩非守恒两相流模型 毛细管效应 柯西问题 解的适定性 衰减率 compressible non-conservative two-phase flow model capillary effect Cauchy problem well-posedness decay rate
  • 相关文献

参考文献2

二级参考文献26

  • 1Baudin M, Berthon C, Coquel F, Masson R, Tran Q H. A relaxation method for two-phase flow models with hydrodynamic closure law. Numer Math, 2005, 99:411-440.
  • 2Baudin M, Coquel F, Tran Q H. A semi-implicit relaxation scheme for modeling two-phase flow in a pipeline. SIAM J Sci ComDut. 2005. 27:914-936.
  • 3Cortes J, Debussehe A, Toumi I. A density perturbation method to study the eigenstructure of two-phase flow equation systems. J Comput Phys, 1998, 14T: 463-484.
  • 4Evje S. Weak solutions for a gas-liquid model relevant for describing gas-kick in oil wells. SIAM J Math Anal, 2011, 43(4): 1887-1922.
  • 5Evje S. Global weak solutions for a compressible gas-liquid model with well-formation interaction. J Diff Eqs, 2011, 251(8): 2352-2386.
  • 6Evje S, Fjelde K -K. Hybrid flux-splitting schemes for a two-phase flow model. J Comput Phys, 2002, 175(2): 674-701.
  • 7Evje S, Fjelde K -K. On a rough AUSM scheme for a one dimensional two-phase model. Computers & Fluids, 2003, 32(10): 1497-1530.
  • 8Evje S, Karlsen K H. Global existence of weak solutions for a viscous two-phase model. J Diff Equations, 2008, 245(9): 2660-2703.
  • 9Evje S, Karlsen K H. Global weak solutions for a viscous liquid-gas model with singular pressure law. Comrn Pure Appl Anal, 2009, 8(6): 1867-1894.
  • 10Evje S, Flatten T, Friis H A. Global weak solutions for a viscous liquid-gas model with transition to single-phase gas flow and vacuum. Nonlinear Analysis TMA, 2009, 70:3864-3886.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部