期刊文献+

用于车辆重识别的视角感知局部注意力网络 被引量:3

View-Aware Part Attention Network for Vehicle Re-Identification
下载PDF
导出
摘要 车辆重识别的目的是从大型车辆数据库中找到与查询车辆相同特征的所有车辆图片。目前,由于同一车辆在不同视角下外观差异大或颜色、车型相同的不同车辆在特定视角下外观差异小,导致车辆重识别的准确度和鲁棒性均有待提高。提出一个视角感知局部注意力网络,采用弱监督注意力学习方式代替人工手动的车辆局部部件标注,自适应学习每个视角内所有显著性局部特征。通过局部注意力裁剪操作裁剪并放大该视角领域内部件细节信息,并基于局部注意力擦除操作擦除一些局部区域,以鼓励模型发掘该视角领域内其他更多的显著性局部线索。构建一种共同视角的注意力增强模块,以强化共同视角特征学习,并根据视角的相似度给每个视角分配相应的权重,使同一视角特征学习得到增强,不同视角特征学习受到抑制。实验结果表明,所提网络在VeRi-776数据集下的mAP为81.2%,在VehicleID数据集下的CMC@1、CMC@5分别为85.7%、98.0%,相较于PRN、PVEN、SAVER等重识别网络具有更高的识别精度和更强的泛化能力。 Vehicle re-identification aims to retrieve all same-identity images from querying vehicle images from a large image database.Currently,the appearance difference of same vehicles under different perspectives is large,whereas the appearance difference of different vehicles under specific perspectives is small probably due to the having same color and model,which leads to a need for the improvement of the accuracy and robustness of vehicle image recognition.A View-Aware Part-Attention Network(VPAN)is proposed,and a weakly-supervised attention-learning method is used to replace manual vehicle local component labeling to adaptively learn all significant local features in each perspective.The detail information of the internal parts in a perspective field is clipped and enlarged by a local attention-clipping operation,and some local areas are erased based on a local attention-erasing operation to encourage the model to discover more significant local clues in the perspective field.A common perspective attention enhancement module is constructed to strengthen common perspective feature learning.Each perspective is assigned a corresponding weight according to the similarity of perspectives,so that same perspective feature-learning is enhanced and different perspective feature-learning is suppressed.The experimental results show that a map of the proposed network with the viri-776 dataset is 81.2%,and that with the vehicleid datasets CMC@1 and CMC@5 are 85.7%and 98.0%respectively.Compared with PRN,PVEN,SARATR and other re-identification networks,the proposed network has higher recognition accuracy and generalization ability.
作者 代广昭 孙伟 徐凡 张小瑞 陈旋 常鹏帅 汤毅 胡亚华 DAI Guangzhao;SUN Wei;XU Fan;ZHANG Xiaorui;CHEN Xuan;CHANG Pengshuai;TANG Yi;HU Yahua(College of Automation,Nanjing University of Information Science and Technology,Nanjing 210044,China;Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology,Nanjing University of Information Science and Technology,Nanjing 210044,China;Engineering Research Center of Digital Forensics,Ministry of Education,Nanjing University of Information Science and Technology,Nanjing 210044,China;Wuxi Research Institute,Nanjing University of Information Science and Technology,Wuxi,Jiangsu 214100,China;College of Computer and Software,Nanjing University of Information Science and Technology,Nanjing 210044,China)
出处 《计算机工程》 CAS CSCD 北大核心 2022年第10期288-297,305,共11页 Computer Engineering
基金 国家自然科学基金(61304205) 江苏省自然科学基金(BK20191401,BK20201136) 江苏省研究生科研与实践创新计划项目(SJCX21_0363) 大学生创新创业训练项目(XJDC202110300601,202010300290,202010300211,202010300116E)。
关键词 车辆重识别 注意力机制 共同视角 局部感知 数据增强 vehicle re-identification attention mechanism common view part awareness data augment
  • 相关文献

参考文献2

二级参考文献4

共引文献16

同被引文献6

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部