摘要
利用基于主成分分析(PCA)算法的径向基(RBF)神经网络对大气中SO_(2)浓度进行滚动预测。以北京大兴地区2019年9月1日至2020年10月31日的气象数据和空气质量参数为基础,结合逐步回归法筛选出与SO_(2)线性相关的参数作为输入样本,构建PCA-RBF预测模型。利用该模型预测北京大兴地区某天的SO_(2)浓度,将预测值保留并作为下一天预测模型的输入参数。以此将预测值不断地向前延伸并进行分析和预测,从而实现SO_(2)浓度的滚动预测。对比RBF网络和PCA-RBF网络两种模型的预测结果,其中PCA-RBF模型期望值和预测值的误差及相关系数分别为0.03μg·m^(-3)和0.9989。表明PCA-RBF网络模型能精准预测SO_(2)浓度变化趋势,为进一步解决大气污染问题提供技术支持。
The rolling prediction of atmospheric SO_(2) concentration using radial basis function(RBF)neural network based on principal component analysis(PCA)algorithm is presented.Based on the meteorological data and air quality parameters from September 1,2019 to October 31,2020 in Daxing district of Beijing,the PCA-RBF prediction model is constructed by combining the stepwise regression method to select the high correlation parameters between SO_(2) and meteorological factors as input samples.Then the PCA-RBF prediction model is used to predict the SO_(2) concentration in Daxing area on a certain day,and the prediction results are retained as the input parameters of the prediction model for the next day.In this way,the predicted value is continuously extended forward for the following analyzation and prediction,so as to realize the rolling prediction of SO_(2) concentration.Comparing the predicted results of RBF network and PCA-RBF network,the error and correlation coefficient of expected value and predicted value of PCA-RBF model are 0.03μg·m^(-3) and 0.9989.It is shown that the PCA-RBF network model can accurately predict the variation trend of SO_(2) concentration,and provide a new technical support for further solving the air pollution problem.
作者
张琦锦
郭映映
李素文
牟福生
ZHANG Qijin;GUO Yingying;LI Suwen;MOU Fusheng(School of Physics and Electronic Information,Huaibei Normal University,Huaibei 235000,China;Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation,Huaibei 235000,China)
出处
《大气与环境光学学报》
CAS
CSCD
2022年第5期550-557,共8页
Journal of Atmospheric and Environmental Optics
基金
国家自然科学基金,41875040
安徽省高校自然科学研究项目,KJ2020A0029
安徽省高校学科拔尖人才,gxbjZD2020067。
关键词
逐步回归分析
主成分分析
主成分分析-径向基神经网络
SO_(2)
stepwise regression analysis
principal component analysis
principal component analysis-radial basis function neural network
SO_(2)