期刊文献+

基于BIM-GA的综合交通枢纽超大深基坑施工费用动态优化 被引量:3

Dynamic optimization of construction cost of super large and deep foundation pit for comprehensive transportation hub project based on BIM-GA
下载PDF
导出
摘要 以洛阳龙门站综合交通枢纽中心北广场工程为依托,将BIM技术和GA相结合,研究了超大深基坑施工费用动态优化问题。考虑资金时间价值和工期奖惩的前提下,采用二次曲线表达直接费与工期的关系,构建了费用动态优化模型。应用软件REVIT和广联达BIM建立了基坑施工三维场布模型,绘制了双代号时标网络图,计算出了工程直接费和间接费;通过BIM-5D平台,进行可视化施工模拟并统计了资金需求量,从定性和定量两个方面分析了方案的可行性并获取项目参数信息。合理确定遗传参数,利用Matlab编程进行了GA费用优化,并对其静态、动态优化结果进行了比较。结果表明:依托项目动态优化方案总工期减少10 d,总费用减少109559元;静态优化方案总工期减少12 d,总费用减少19984元,考虑资金时间价值的动态费用优化更符合工程实际,优化结果更可靠、准确。将BIM技术和GA相结合进行费用动态优化,可以充分发挥二者的优势,准确快速地获取项目参数和资源信息,解决了超大深基坑工序复杂、工程数据统计量庞大等难题,可高效、准确地在全局域范围内搜索最优解。 Based on the North Square project of the comprehensive transportation hub center of Luoyang Longmen Station,this paper studies the dynamic optimization of the construction cost of super deep foundation pit by combining BIM technologywith GA.Considering the time value of capital and the reward and punishment of construction period,a quadratic curve is used to express the relationship between direct cost and construction period,and a dynamic cost optimization model is constructed.Using Revit and Glodon BIM software,the 3D site layout model of foundation pit construction was established,the double code time scale network diagram was drawn,and the direct and indirect costs of the project were calculated.Through the BIM-5D platform,the visual construction simulation was carried out and the capital demand was counted,the feasibility of the scheme was analyzed qualitatively and quantitatively,and the project parameter information was obtained.Then the genetic parameters are reasonably determined,and the GA cost optimization is carried out by using Matlab programming,and the static and dynamic optimization results are compared.The results show that the total construction period is reduced by 10 days,and the total cost is reduced by 109559 yuan relying on the dynamic optimization scheme of the project.The total construction period of the static optimization plan is reduced by 12 days,and the total cost is reduced by 19984 yuan.The dynamic cost optimization considering the time value of capital is more in line with the project reality,and the optimization results are more reliable and accurate.In this paper,BIM technology and GA are combined for dynamic cost optimization,which can give full play to their advantages,and obtain project parameters and resource information accurately and quickly,so as to solve problems such as complex procedures for super deep foundation pits and huge amount of engineering data statistics,which can efficiently and accurately search the optimal solution in the global domain.
作者 杨义 李经宇 魏显阳 彭浩 张戈 于英霞 YANG Yi;LI Jingyu;WEI Xianyang;PENG Hao;ZHANG Ge;YU Yingxia(China Railway 19th Bureau Group Corporation Limited,Beijing 1001761,China;School of Civil Engineering,Henan University of Science and Technology,Luoyang 471000,China;The 1st Engineering Ltd.of China Railway 11th Bureau Group,Xiangyang 441104,China;Beijing Track Maintenance Depot,China Railway Beijing Group Co.,Ltd.,Beijing 100010,China)
出处 《中原工学院学报》 CAS 2022年第4期64-72,共9页 Journal of Zhongyuan University of Technology
基金 国家自然科学基金项目(U1604135) 中铁十一局集团有限公司重点科研课题(18-AⅡ-02) 中铁十九局集团有限公司重点科研课题(19-A04)。
关键词 超大深基坑 BIM技术 遗传算法 费用优化 资金时间价值 super and deep foundation pit BIM technology genetic algorithm cost optimization time value of capital
  • 相关文献

参考文献11

二级参考文献80

  • 1胡文发,何新华.基于知识系统的施工进度自动安排[J].同济大学学报(自然科学版),2005,33(7):980-984. 被引量:5
  • 2王家远,申立银,郝晓冬.公共建设项目工期延误风险研究[J].深圳大学学报(理工版),2006,23(4):303-308. 被引量:25
  • 3Burns S, Liu L, Feng C. The LP/IP Hybrid Method for Construction Time-cost Trade-off Analysis[J]. Construction Management and Economics, 1996,14(3):265-276.
  • 4Goldberg D E, Segrest P. Finite Markov chain analysis of genetic algorithms[A]. Genetic Algorithms and their Applications Proc., 2nd Int. Conf. On Genetic Algorithms[C]. Mahwah,NJ USA:Lawrence Erlbaum Associates Inc,1987. 1-8.
  • 5Feng Chung Wei, Liu Liang, Scott A Burns. Using Genetic Algorithms to Solve Construction Time-Cost Trade-Off Problems[J]. Journal of Computing in Civil Engineering, 1997, 11(3):184-189.
  • 6Li Heng, Peter Love. Using Improved Genetic Algorithms to Facilitate Time-Cost Optimization[J]. Journal of Construction Engineering and Management, 1997, 123(3):233-237.
  • 7Tarek Hegazy. Optimization of Construction Time-Cost Trade-Off Analysis Using Genetic Algorithms[J]. Canadian Journal of Civil Engineering, 1999, 26(6):685-697.
  • 8Liu L, Burns S, Feng C. Construction Time-cost Trade-off Analysis Using LP/IP[J]. Journal of Construction Engineering and Management, 1995, 121(4):446-454 .
  • 9Russell A.A comparison of heuristics for scheduling project with cash flows and resource restrictions[J].Management Science,1986,32(10):1291-1300
  • 10Hegazy T,Ersahin T.Simplified spreadsheet solution.II:Overall schedule optimization[J].Journal of Construction Engineering and Management,2000,127(6):469-475.

共引文献203

同被引文献22

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部